MENU

RD Chapter 2 Functions Ex 2.4 Solutions

Question - 1 : -

State with reason whether the following functions have inverse:
(i) f: {1, 2, 3, 4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4,10)}

(ii) g: {5, 6, 7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3),(7, 4), (8, 2)}

(iii) h: {2, 3, 4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3,9), (4, 11), (5, 13)}

Answer - 1 : -

(i) Given f: {1, 2, 3,4} → {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)}

We have:

f (1) = f (2) = f (3) = f (4) = 10

 f is notone-one.

 f is not abijection.

So, f does not have an inverse.

(ii) Given g: {5, 6,7, 8} → {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)}

from the question it is clear that g (5) = g (7) = 4

f is notone-one.

f is not abijection.

So, f does not have an inverse.

(iii) Given h: {2, 3,4, 5} → {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)}

Here, different elements of the domain have different images in the co-domain.

h is one-one.

Also, each element in the co-domain has a pre-image in the domain.

 h is onto.

 h is abijection.

Therefore h inverseexists.

 h has an inverseand it is given by

h-1 = {(7, 2), (9, 3), (11, 4), (13, 5)}

Question - 2 : -

Find f −1 if it exists: f: A → B, where 

(i) A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) =3 x.

(ii) A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81}and f(x) = x2

Answer - 2 : -

(i) Given A = {0,−1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.

So, f = {(0, 0), (-1, -3), (-3, -9), (2, 6)}

Here, differentelements of the domain have different images in the co-domain.

Clearly, this is one-one.

Range of f = Range of f = B

so, f is a bijection and,

Thus, f -1 exists.  

Hence, f -1= {(0, 0), (-3, -1), (-9, -3), (6, 2)}

(ii) Given A ={1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2

So, f = {(1, 1), (3, 9), (5, 25), (7, 49), (9, 81)}

Here, differentelements of the domain have different images in the co-domain.

Clearly, f is one-one.

But this is not onto because the element 0 in the co-domain (B) has nopre-image in the domain (A)

f is not abijection.

So, f -1does not exist.

Question - 3 : -

Consider f: {1, 2, 3} → {a, b, c} and g:{a, b, c} → {apple, ball, cat} defined as f (1)= a, f (2) = b, f (3) = c, g (a) =apple, g (b) = ball and g (c) = cat. Showthat f, g and gof are invertible. Find f−1, g−1 and gof−1andshow that (gof)−1 = f −1o g−1

Answer - 3 : -

Given f = {(1, a), (2,b), (c , 3)} and g = {(a , apple) , (b , ball) , (c , cat)} Clearly , f and gare bijections.

So, f and g areinvertible. 

Now,

-1 ={(a ,1) , (b , 2) , (3,c)} and g-1 = {(apple, a), (ball , b),(cat , c)}

So, f-1 og-1= {apple, 1), (ball, 2), (cat, 3)}……… (1)

f: {1,2,3,} → {a,b, c} and g: {a, b, c} → {apple, ball, cat}

So, gof: {1, 2,3} → {apple, ball, cat}

(gof) (1) = g (f (1))= g (a) = apple

(gof) (2) = g (f (2))

= g (b)

= ball,

And (gof) (3) = g (f(3))

= g (c)

= cat 

gof = {(1, apple),(2, ball), (3, cat)}

Clearly, gof is abijection.

So, gof isinvertible. 

(gof)-1 = {(apple,1), (ball, 2), (cat, 3)}……. (2)

Form (1) and (2), weget

(gof)-1 =f-1 o g -1

Question - 4 : -

Let A = {1, 2, 3, 4}; B = {3, 5, 7, 9}; C ={7, 23, 47, 79}and f: A → B, g: B → C be definedas f(x) = 2x + 1 and g(x) = x2 − 2. Express(gof)−1 and f−1 og−1 asthe sets of ordered pairs and verify that (gof)−1 = f−1 og−1.

Answer - 4 : -

Given that f (x) = 2x+ 1

 f= {(1, 2(1)+ 1), (2, 2(2) + 1), (3, 2(3) + 1), (4, 2(4) +1)}

={(1, 3), (2, 5), (3, 7), (4, 9)}

Also given that g(x) =x2−2

 g= {(3, 32−2), (5, 52−2), (7, 72−2), (9, 92−2)}

={(3, 7), (5, 23), (7, 47), (9, 79)}

Clearly f and g are bijections and, hence, f−1: B→A and g−1: C→ B exist.

So, f−1= {(3, 1), (5, 2), (7, 3), (9, 4)} 

And g−1= {(7, 3), (23, 5), (47, 7), (79, 9)}

Now, (f−1 o g−1): C→A

f−1 o g−1 ={(7, 1), (23, 2), (47, 3), (79, 4)}……….(1)

Also, f: A→B and g: B → C,

 gof: A → C, (gof) −1 : C→A

So, f−1 o g−1and (gof)−1 have same domains.

(gof) (x) =g (f (x))

=g (2x + 1)

=(2x +1 )2−2

 (gof) (x) = 4x+ 4x +1 − 2

 (gof) (x) = 4x2+ 4x −1

Then, (gof) (1) = g (f (1)) 

= 4 + 4 − 1 

=7,

(gof) (2) =g (f (2))

= 4(2)2 +4(2) – 1 = 23,

(gof) (3) =g (f (3))

= 4(3)2 +4(3) – 1 = 47 and 

(gof) (4) =g (f (4))

= 4(4)2 +4(4) − 1 = 79

So, gof ={(1, 7), (2, 23), (3, 47), (4, 79)}

(gof)– 1 ={(7, 1), (23, 2), (47, 3), (79, 4)}…… (2)

From (1) and (2), we get:

(gof)−1 = f−1 o g−1

Question - 5 : -

Show that the function f: Q → Q, definedby f(x) = 3x + 5, is invertible. Also, find f−1

Answer - 5 : -

Givenfunction f: Q → Q, defined by f(x) = 3x + 5

Now we have to showthat the given function is invertible.

Injection of f:

Let x and y be two elements of the domain (Q),

Such that f(x) = f(y)

3x + 5 =3y + 5

3x = 3y

x = y

so, f is one-one.

Surjection of f:

Let y be in the co-domain (Q),

Such that f(x) =y

3x +5 = y 

3x = y – 5

x = (y -5)/3 belongsto Q domain

f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have tofind f-1:

Let f-1(x)= y…… (1)

 x = f(y)

 x = 3y + 5

 x −5 = 3y

y = (x – 5)/3

Now substituting thisvalue in (1) we get

So, f-1(x)= (x – 5)/3

Question - 6 : - Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.

Answer - 6 : -

Givenf: R → R given by f(x) = 4x + 3

Now we have to showthat the given function is invertible.

Consider injectionof f:

Let x and y be two elements of domain (R),

Such that f(x) = f(y)

4x + 3 =4y + 3

4x = 4y

x = y

So, f is one-one.

Now surjectionof f:                 

Let y be in the co-domain (R),

Such that f(x) =y.

4x + 3 = y 

4x = y -3

x = (y-3)/4 inR (domain)

f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have tofind f -1

Let f-1(x)= y……. (1)

 x = f (y)

 x = 4y + 3

 x − 3 = 4y

y = (x -3)/4

Now substituting thisvalue in (1) we get

So, f-1(x)= (x-3)/4           

Question - 7 : -

Consider f: R → R+ → [4, ∞) givenby f(x) = x2 + 4. Show that f is invertiblewith inverse f−1 of f given by f−1(x)= √ (x-4) where R+ is the set of all non-negative real numbers.

Answer - 7 : -

Givenf: R → R+ → [4, ∞) given by f(x) = x2 +4.

Now we have to showthat f is invertible,

Consider injectionof f:

Let x and y be two elements of the domain (Q),

Such that f(x) =f(y) 

 x+4 = y+ 4

 x=y2

 x = y     (as co-domain as R+)

So, f isone-one

Now surjectionof f:

Let y be in the co-domain (Q),

Such that f(x) =y

x2 +4 = y

x2 =y – 4

x = √ (y-4) in R

 f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have tofind f-1:

Let f−1 (x) = y……(1)

 x = f (y)

 x = y2 + 4

 x − 4 = y2

y = √ (x-4)

So, f-1(x)= √ (x-4)

Now substituting thisvalue in (1) we get,

So, f-1(x)= √ (x-4)

Question - 8 : - If f(x) = (4x + 3)/ (6x – 4), x ≠ (2/3) show that fof(x) = x, for all x ≠ (2/3). What is the inverse of f?

Answer - 8 : -

It is given that f(x)= (4x + 3)/ (6x – 4), x ≠ 2/3

Now we have to showfof(x) = x

(fof)(x) = f (f(x))

= f ((4x+ 3)/ (6x –4))

= (4((4x + 3)/ (6x-4)) + 3)/ (6 ((4x +3)/ (6x – 4)) – 4)

= (16x + 12 + 18x –12)/ (24x + 18 – 24x + 16)

= (34x)/ (34)

= x

Therefore, fof(x) = xfor all x ≠ 2/3

=> fof = 1

Hence, the givenfunction f is invertible and the inverseof f is f itself.

Question - 9 : -

Consider f: R+ → [−5, ∞) given by f(x) =9x2 + 6x − 5. Show that f is invertible with

f-1(x) = (√(x +6)-1)/3 

Answer - 9 : -

Given f: R+ →[−5, ∞) given by f(x) = 9x2 + 6x – 5

We have to show that fis invertible.

Injectivity of f:

Let x and y be two elements of domain (R+),

Such that f(x) = f(y)

 9x+6x – 5 = 9y+ 6y − 5

 9x+6x = 9y+ 6y

x = y (As, x, y R+)

So, f isone-one.

Surjectivityof f:

Let y is in the co domain (Q)

Such that f(x) =y

9x2 +6x – 5 = y

9x2 +6x = y + 5

9x2 +6x +1 = y + 6 (By adding 1 on both sides)

(3x + 1)2 =y + 6

3x + 1 = √(y + 6)

3x = √ (y + 6) – 1

x = (√ (y + 6)-1)/3in R+ (domain)

f is onto.

So, f is a bijection and hence, it is invertible.

Now we have to find f-1

Let f−1(x) = y…..(1)

 x = f (y)

 x = 9y+ 6y − 5

 x + 5 = 9y+6y

 x + 6= 9y2+ 6y + 1        (adding 1 on both sides)

 x + 6 = (3y + 1)2

3y + 1 = √ (x + 6)

 3y =√(x +6) -1

y = (√ (x+6)-1)/3

Now substituting this valuein (1) we get,

So, f-1(x) =(√ (x+6)-1)/3 

Question - 10 : -

If f: R → R be defined by f(x) = x3 −3,then prove that f−1 exists and find a formula for f−1.Hence, find f−1 (24) and f−1 (5).

Answer - 10 : -

Givenf: R → R be defined by f(x) = x3 −3

Now we have to prove thatf−1 exists

Injectivity of f:

Let x and y be two elements in domain (R),

Such that, x3 − 3 = y3 − 3            

 x3 = y3        

 x = y

So, f isone-one.

Surjectivityof f:

Let y be in the co-domain (R)

Such that f(x) =y

x3 –3 = y

 x3 =y + 3 

x = (y+3) in R

 f is onto.

So, f is a bijection and, hence, it is invertible.

Finding f -1:

Let f-1(x) = y……..(1)

 x= f(y)

 x = y−3

 x + 3 = y3

 y = (x + 3) = f-1(x)        [from (1)]

So, f-1(x)= (x + 3)

Now, f-1(24)= (24 + 3)

= 27

= 33

= 3

And f-1(5)= (5 + 3)

= 8

= 23

= 2

Free - Previous Years Question Papers
Any questions? Ask us!
×