MENU
Question -

Consider f: R → R given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f.



Answer -

Givenf: R → R given by f(x) = 4x + 3

Now we have to showthat the given function is invertible.

Consider injectionof f:

Let x and y be two elements of domain (R),

Such that f(x) = f(y)

4x + 3 =4y + 3

4x = 4y

x = y

So, f is one-one.

Now surjectionof f:                 

Let y be in the co-domain (R),

Such that f(x) =y.

4x + 3 = y 

4x = y -3

x = (y-3)/4 inR (domain)

f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have tofind f -1

Let f-1(x)= y……. (1)

 x = f (y)

 x = 4y + 3

 x − 3 = 4y

y = (x -3)/4

Now substituting thisvalue in (1) we get

So, f-1(x)= (x-3)/4           

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×