Chapter 1 सम्बन्ध एवं फलन (Relations and Functions) Ex 1.2 Solutions
Question - 1 : - सिद्ध कीजिए कि f(x) = द्वारा परिभाषित फलन f : R* → R* एकैकी तथा आच्छादक है, जहाँ R* सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रान्त R* को N से बदल दिया जाए, जबकि सहप्रांत पूर्ववत R* ही रहे, तो भी क्या यह परिणाम सत्य होगा?
Answer - 1 : -
(i) दिया है, f (x) = यदि f (x1) = f (x2) ⇒ =
x1 = x2
अत:
प्रान्त के प्रत्येक अवयव का एक ही प्रतिबिम्ब है।
अतः
f एकैकी फलन है।
(ii)
दिया है, x1 = x2 ∈ N
⇒ f एकैकी है।
परन्तु सहप्रान्त का प्रत्येक अवयव प्रान्त के अवयव का प्रतिबिम्ब न हो।
इस प्रकार f एकैकी है परन्तु आच्छादक नहीं है। (इति सिद्धम्)
Question - 2 : - निम्नलिखित फलनों की एकैक (Injective) तथा आच्छादी (Surjective) गुणों की जाँच कीजिए :
(i) f (x) = x2 द्वारा प्रदत्त f : N → N फलन है।
(ii) f (x) = x2 द्वारा प्रदत्त f : Z → Z फलन है।
(iii) f (x) = x2 द्वारा प्रदत्त f : R → R फलन है।
(iv) f (x) = x3 द्वारा प्रदत्त f : N → N फलन है।
(v) f (x) = x3 द्वारा प्रदत्त f : Z → Z फलन है।
Answer - 2 : -
(i)
दिया है, f ( x ) = x2 और f : N → N
(a)
f ( x1 ) = f ( x2 ) ⇒
⇒ x1 =x2 ,
⇒ x1 =x2 ∈ N
f एकैकी है।
(b)
परन्तु सहप्रान्त में ऐसे कुछ अवयव हैं जो प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं हैं।
उदाहरणार्थ :
माना 3 सहप्रान्त में है तो 3 प्रान्त के किसी भी अवयव को प्रतिबिम्ब नहीं होगा।
∴ f आच्छादक नहीं है।
अत:
f एकैकी है परन्तु आच्छादक नहीं है।
(ii)
f (x) = x2 f : Z → Z , जबकि f (x) = x2
(a)
f (-1) = f (1) = 1 ⇒ -1 और 1 का प्रतिबिम्ब 1 है।
∵ प्रान्त के दो भिन्न-भिन्न अवयवों -1 और 1 का परिसर R में एक ही f-प्रतिबिम्ब 1 पर है।
∵ प्रतिबिम्ब समान है।
∴ f एकैकी नहीं है।
(b)
सहप्रान्त में ऐसे अवयव हैं जो प्रान्त के किसी अवयव में प्रतिबिम्ब नहीं हैं।
उदाहरणार्थ-3
सहप्रान्त में है, परन्तु 3 प्रान्त के किसी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अत:
f न तो एकैकी है और न ही आच्छादक है।
(iii)
f : R → R, यदि f (x) = x2
(a)
( -1 )2 = (1)2 = f (-1) = f (1)
अतः
-1 और 1 का प्रतिबिम्ब 1 है। अर्थात् प्रान्त के दो भिन्न-भिन्न अवयवों -1 और 1 का परिसर R में एक ही f- प्रतिबिम्ब 1 है। अर्थात् प्रतिबिम्ब समान है,
∴ f एकैकी नहीं है।
(b)
-2 सहप्रान्त में है परन्तु यह प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
अत:
f आच्छादक नहीं है।
∴ f न तो एकैकी है और न ही आच्छादक है।
Question - 3 : - सिद्ध कीजिए कि f(x) = [x] द्वारा प्रदत्त महत्तम पूर्णाक फलन f : R – R, न तो एकैकी है और न आच्छादक है, जहाँ [x], x से कम या उसके बराबर महत्तम पूर्णांक को निरूपित करता है।
Answer - 3 : -
स्पष्ट है कि f(x) का प्रान्त = R
तथा f(x) = 0 Y x e[0, 1)
∴ f : R → R एकैकी नहीं है।
पुनः f(x) केवल पूर्णांक मान ग्रहण करता है।
∴ सह प्रान्त के अपूर्णांक अवयव प्रान्त के किसी भी अवयव के प्रतिबिम्ब नहीं हैं।
∴ f : R → R आच्छादक नहीं है।
अत: f : R → R न तो एकैकी है और न ही आच्छादक।
Question - 4 : - सिद्ध कीजिए कि f ( x ) =| x | द्वारा प्रदत्त मापांक फलन f : R→ R, न तो एकैकी है। और न आच्छादक है, जहाँ | x | बराबर x , यदि x धन या शून्य है तथा| x | बराबर – x, यदि x ऋण है।
Answer - 4 : -
यहाँ f : R → R, जबकि f ( 3 ) = [x]
(a)
f (-1) = |- 1 | = 1, f(1) = |1| = 1
-1 और 1 का एक ही प्रतिबिम्ब है।
अत:
प्रान्त के दो भिन्न-भिन्न अवयवों -1 और 1 का परिसर R में एक ही f – प्रतिबिम्ब 1 है।
∵ प्रतिबिम्ब समान है।
इसलिए f एकैकी नहीं है।
(b)
सहप्रान्त की कोई भी ऋणात्मक संख्या प्रान्त के किसी भी अवयव का प्रतिबिम्ब नहीं है।
∴ f आच्छादक नहीं है।
अत:
f न तो एकैकी है और न ही आच्छादक है। इति सिद्धम्
Question - 5 : - सिद्ध कीजिए कि f :R → R
Answer - 5 : -
स्पष्टतया f(2) = 1 तथा f (3) = 1
∴ f(2) = f(3) जबकि 2 ≠ 3
∴ f एकैकी नहीं है। f का परिसर = {1, 0, -1} c R
∴ f अन्तः क्षेपी है।
अतः फलन न तो एकैकी है और न आच्छादक।
Question - 6 : - मान लीजिए कि A = {1, 2, 3}, B = {4, 5, 6, 7} तथाf = { (1, 4), (2, 5), (3, 6) } A से B तक एक फलन है। सिद्ध कीजिए कि f एकैकी है।
Answer - 6 : -
दिया है, A ={1, 2, 3}, B = {4, 5, 6, 7}
f : A → B इस प्रकार है कि f = { (1, 4 ), ( 2, 5 ), ( 3, 6 ) } A के प्रत्येक अवयव का अलग-अलग प्रतिबिम्ब है। इसलिए f एकैकी है।
( इति सिद्धम् )
Question - 7 : - निम्नलिखित में से प्रत्येक स्थिति में बताइये कि क्या दिए हुए फलन एकैकी, आच्छादक अथवा एकैकी आच्छादी (bijective) हैं। अपने उत्तर का औचित्य भी बताइये।
(i) f (x) = 3 – 4 द्वारा परिभाषित फलन f : R → R है।
(ii) f (x) = 1 + x2 द्वारा परिभाषित फलन f : R → R है।
Answer - 7 : - (i)
यहाँ f : R – R, यदि f(x) = 3 – 4 x
अत:
f, बहु-एक फलन है।
∴ f एकैकी नहीं है।
(b)
पुनः x के प्रत्येक वास्तविक मान के लिए (1 + x) का मान सदैव 1 या 1 से बड़ा होगा।
∴ परिसर R में 1 से छोटे अवयव (0 तथा ऋणात्मक संख्याएँ ), डोमेन R के किसी भी अवयव के f-प्रतिबिम्ब नहीं होंगे।
∴ f – अन्त:क्षेपी फलन है अर्थात् आच्छादक नहीं है।
इसलिए दिया हुआ फलन न तो एकैकी है और न ही आच्छादक है।
Question - 8 : - मान लीजिए A तथा B दो समुच्चय हैं। सिद्ध कीजिए किf : A × B → B × A, इस प्रकार हैं कि f (a, b) = f (b, a) एक एकैकी आच्छादक फलन है।
Answer - 8 : -
Question - 9 : - दिखाइए कि फलन f : N → N जोकि
Answer - 9 : -
Question - 10 : - मान लीजिए कि A= R → { 3 } तथा B = R – { 1 } हैं। (x) = द्वारा परिभाषित फलन f : A → B पर विचार कीजिए। क्या । एकैकी तथा आच्छादक है? अपने का औचित्य भी बतलाइए।
Answer - 10 : - दिया है , f : A → B , तथा
A= R → { 3 } तथा B = R – { 1 } हैं। (x) = द्वारा परिभाषित फलन f : A → B पर विचार कीजिए। क्या । एकैकी तथा आच्छादक है? अपने का औचित्य भी बतलाइए।
इससे सिद्ध होता है कि सहडोमेन R का स्वेच्छ अवयव y ≠ 1, डोमेन R के अवयव x का f-प्रतिबिम्ब है अर्थात् सहडोमेन R का प्रत्येक अवयव, डोमेन R के किसी-न-किसी अवयव का f-प्रतिबिम्ब अवयव है।
फलन f का परिसर = सहडोमेन R फलन f आच्छादक है।
इसलिए दिया हुआ फलन । एकैकी तथा आच्छादक है।