Chapter 14 गणितीय विवेचन (Mathematical Reasoning) Ex 14.5 Solutions
Question - 1 : - सिद्ध कीजिए कि कथन यदि x एक ऐसी वास्तविक संख्या है कि x3 + 4x = 0, तो x = 0
(i) प्रत्यक्ष विधि द्वारा
(ii) विरोधोक्ति द्वारा
(iii) प्रतिधनात्मक कथन द्वारा
Answer - 1 : -
(i) प्रत्यक्ष विधि द्वारा
x3 + 4x = 0 या x (x² + 4) = 0
x = 0 या x² + 4 = 0
परन्तु x² + 4 ≠ 0, x ∈ R
अतः x = 0.
(ii) विरोधोक्ति द्वारा : माना x ≠ 0
यदि समीकरण x² + 4x = 0 का एक मूल p हो, तब
p3 + 4p = 0 या p(p² + 4) = 0
p = 0 या p² + 4 = 0
p² + 4 ≠ 0
p= 0 विरोधात्मक है x ≠ p के जो पूर्व निर्धारित है।
अर्थात् p = 0 या x = 0
(iii) प्रतिधनात्मक कथन द्वारा:
माना x = 0 सत्य नहीं है।
x ∈ R, x3 + 4x ≠ 0, और x ≠ 0 (माना गया है)
x (x² + 4) ≠ 0 यह सिद्ध करता है कि x² + 4x = 0 का x = 0 मूल है।
Question - 2 : - प्रत्युदाहरण द्वारा सिद्ध कीजिए कि कथन ” किसी भी ऐसी वास्तविक संख्याओं a और b के लिए, जहाँ a² = b² का तात्पर्य है कि a = b ” सत्य नहीं है।
Answer - 2 : -
माना जब a = 1, b = -1 तो a² = b²
परन्तु a ≠ b. अतः दिया गया कथन सत्य नहीं है।
Question - 3 : - प्रतिधनात्मक विधि द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य है।
p : यदि x एक पूर्णांक है और x² सम है तो x सम है।
Answer - 3 : -
माना x एक सम संख्या नहीं हैं।
x = 2n + 1
x² = (2n + 1)² = 4n² + 4n + 1 = 2 (2n² + 2n) + 1
यह एक विषम संख्या है। इस प्रकार यदि q सत्य नहीं है तो p भी सत्य नहीं है। अर्थात दिया हुआ कथन सत्य है।
Question - 4 : - प्रत्युदाहरण द्वारा सिद्ध कीजिए कि निम्नलिखित कथन सत्य नहीं हैं।
(i) p : यदि किसी त्रिभुज के कोण समान हैं, तो त्रिभुज एक अधिक कोण त्रिभुज है।
(ii) q : समीकरण x² – 1 = 0 के मूल 0 और 2 के बीच स्थित नहीं है।
Answer - 4 : -
(i) p : यदि किसी त्रिभुज के कोण समान हैं, तो त्रिभुज एक अधिक कोण त्रिभुज है।
हल:
माना एक कोण = 90 + θ
तीनों कोण समान हों, तब
त्रिभुज के तीनों कोणों का योग = 3 (90 + θ) = 270 + 3θ
यह 180° के बराबर नहीं है।
त्रिभुज को कोई भी कोण अधिक कोण नहीं हो सकता अर्थात वह त्रिभुज अधिक कोण त्रिभुज नहीं हो सकता है।
(ii) q : समीकरण x² – 1 = 0 के मूल 0 और 2 के बीच स्थित नहीं है।
हल:
0 और 2 के बीच की संख्या 1 लीजिए।
x² – 1 = 0 में x = 1 रखने पर,
1 – 1 = 0,
अत: x = 1, दिए हुए समीकरण को संतुष्ट करता है।
इसलिए x = 1, समीकरण x² – 1 = 0 का मूल है और 0 और 2 के बीच स्थित हैं।
अतः दिया गया कथन सत्य नहीं है।
Question - 5 : - निम्नलिखित कथनों में से कौन से सत्य हैं और कौन से असत्य हैं। प्रत्येक दशा में अपने उत्तर के लिए वैध कारण बतलाइए:
(i) p : किसी वृत्त की प्रत्येक त्रिज्या वृत्त की जीवा होती है।
(ii) q : किसी वृत्त का केंद्र वृत्त की प्रत्येक जीवा को समद्विभाजित करता है।
(iii) r : एक वृत्त किसी दीर्घवृत्त की एक विशेष स्थिति है।
(iv) s : यदि x औरy ऐसे पूर्णाक हैं कि x > y, तो -x < -y हैं।
(v) t : √11 एक परिमेय संख्या है।
Answer - 5 : -
(i) p : किसी वृत्त की प्रत्येक त्रिज्या वृत्त की जीवा होती है।
हल:
असत्य : त्रिज्या का एक सिरा केंद्र पर ओर दूसरा सिरा वृत्त पर होता हो तो वह जीवा नहीं होती है। अत: यह वृत्त की जीवा नहीं है।
(ii) q : किसी वृत्त का केंद्र वृत्त की प्रत्येक जीवा को समद्विभाजित करता है।
हल:
असत्य : वृत्त का केंद्र केवल व्यास को समद्विभाजित करता है। प्रत्येक जीवा केंद्र से होकर नहीं जाती है।
अत: वृत्त का केंद्र प्रत्येक जीवा को समद्विभाजित नहीं करता है।
(iii) r : एक वृत्त किसी दीर्घवृत्त की एक विशेष स्थिति है।
हल:
सत्य : दीर्घवृत्त का समीकरण
जब a = b तब
या x² + y² = a²अत: यह वृत्त का समीकरण है।
(iv) s : यदि x औरy ऐसे पूर्णाक हैं कि x > y, तो -x < -y हैं।
हल:
सत्य यदि x और y पूर्णांक हैं और x > y तो -x < -y (असमिकाओं के नियम से)
(v) t : √11 एक परिमेय संख्या है।
हल:
असत्य : √11 एक अपरिमेय संख्या है।