MENU

Chapter 2 संबंध एवं फलन (Relations and Functions) Ex 2.2 Solutions

Question - 1 : - मान लीजिए A = {1, 2, 3, …….14}, R = {x, y) : 3x – y = 0, जहाँ x, y ∈ A} द्वारा A से A का एक संबंध R लिखिए। इसके प्रांत, सहप्रांत और परिसर लिखिए।

Answer - 1 : -

A = {1, 2, 3, …., 14}, R : A जबकि
R = {(x, y) : 3x – y = 0 या y = 3x} = {(1, 3), (2, 6), (3, 9), (4, 12),….}
(i) प्रांत : संबंध R के समुच्चयों में x के अवयव = {1, 2, 3, 4}.
सहप्रांत : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}.
परिसर : संबंध R के समुच्चयों में y के अवयव = {3, 6, 9, 12}.

Question - 2 : -
प्राकृत संख्याओं के समुच्चय पर R = {x, y) : y = x + 5, x संख्या 4 से कम, एक प्राकृत संख्या है, x, y ∈ N} द्वारा एक संबंध R परिभाषित कीजिए। इस संबंध को
(i) रोस्टर रूप में इसके प्रांत और परिसर लिखिए।

Answer - 2 : -

संबंध R, दिया गया है।
R = {(x, y) : y = x + 5, x, y ∈ N तदा x < 4}
= {(1, 6), (2, 7), (3, 8)}
(i) प्रान्त = {1, 2, 3}.
परिसर = {6, 7, 8}.

Question - 3 : -
A = {1, 2, 3, 5) और B = {4, 6, 9}, A से B में एक सम्बन्ध
R = {x, y} : x और y का अंतर विषम है, x ∈ A, y ∈ B} द्वार परिभाषित कीजिए| R को रोस्टर रूप में लिखिए।

Answer - 3 : -

दिया है:
A = {1, 2, 3, 5} और B = {4, 6, 9}. A से B में संबंध,
R = {(x, y) : x, y में अंतर विषम है, x ∈ A, y ∈ B}
= {1, 4,), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}.

Question - 4 : -
दी हुई आकृति समुच्चय P से Q का एक संबंर दर्शाती है। इस संबंध को
(i) समुच्चय निर्माण रूप में
(ii) रोस्टर रूप में लिखिए। इसके प्रांत व परिसर क्या हैं ?

Answer - 4 : -

(i) समुच्चय निर्माण रूप में, R = {(3, y) : y = x – 2, x = 5, 6, 7 के लिए}
(ii) रोस्टर रूप में, R = {(5, 3), (6, 4), (7, 5)}
प्रान्त = {5, 6, 7}
और परिसर = {3, 4, 5}.

Question - 5 : -
मान लीजिए कि A= {1, 2, 3, 4, 6} मान लीजिए कि R, A पर {(a, b) : a, b ∈ A, संख्या a संख्या b को यथावथ विभाजित करती है। द्वारा परिभाषित एक संबंध है।
(i) R को रोस्टर रूप में लिखिए।
(ii) R का प्रांत ज्ञात कीजिए।
(iii) R का परिसर ज्ञात कीजिए।

Answer - 5 : -

दिया है :
A = {1, 2, 3, 4, 6}
R = {(a, b) : a, b ∈ A, a संख्या b को विभाजित करती है।
(i) रोस्टर रूप में, R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)}
(ii) R का प्रांत = {1, 2, 3, 4, 5, 6}
(iii) R का परिसर = {1, 2, 3, 4, 5, 6}.

Question - 6 : - R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}} द्वारा परिभाषित संबंध R के प्रांत और परिसर ज्ञात कीजिए।

Answer - 6 : -

R = {(x, x + 5) : x ∈ {, 1, 2, 3, 4, 5}} = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}
R का प्रांत = {0, 1, 2, 3, 4, 5}
R का परिसर : {5, 6; 7, 8, 9, 10}.

Question - 7 : - संबंध R = {(x, x3) : x संख्या 10 से कम एक अभाज्य संख्या है। को रोस्टर रूप में लिखिए।

Answer - 7 : -

10 से कम अभाज्य संख्याएँ 2, 3, 5, 7
रोस्टर रूप में, R = {(x, x3) : x एक अभाज्य संख्या है जो 10 से कम है।
= {(2, 8), (3, 27), (5, 125), (7, 343)}.

Question - 8 : - मान लीजिए कि A= {x, y, z} और B = {1, 2}, A से B के संबंधों की संख्या ज्ञात कीजिए।

Answer - 8 : -

दिया है। A = {x, y, z}, B = {1, 2}
A x B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}
n(A x B) = 6
संबंधों की कुल संख्या = A x B के उपसमुच्चयों की संख्या = 26 = 64.

Question - 9 : - मान लीजिए कि R, Z पर, R= {(a, b) : a, b ∈ Z, a – b एक पूर्णाक है}, द्वारा परिभाषित एक संबंध है। R के प्रांत व परिसर ज्ञात कीजिए।

Answer - 9 : -

R समुच्चय Z पर एक संबंध है तथा R = {(a, b), a ∈ Z, b ∈ Z, a – b एक पूर्णांक संख्या है।
प्रांत (R) = Z
परिसर (R) = Z.

Free - Previous Years Question Papers
Any questions? Ask us!
×