MENU

Chapter 6 रेखाएँ और कोण (Lines and Angles) Ex 6.3 Solutions

Question - 1 : - दी गई आकृति में ΔPQR की भुजाओं QP और RQ को क्रमशः बिन्दुओं S और T तक बढ़ाया गया है। यदि ∠SPR = 135° है और ∠PQT = 110° है तो ∠PRQ ज्ञात कीजिए।

Answer - 1 : -

ΔPQR की भुजा QP को बिन्दु S तक बढ़ाया गया है जिससे
बहिष्कोण ∠SPR = ∠PQR + ∠PRQ . (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
परन्तु दिया है :
∠SPR = 135°
∠SPR = 135°
∠PQR + ∠PRQ = 135° …….(1)
पुनः ΔPQR की भुजा RQ को बिन्दु T तक बढ़ाया गया है जिससे
बहिष्कोण ∠PQT = ∠QPR + ∠PRQ
(किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
परन्तु ज्ञात है कि
∠PQT = 110°
∠QPR + ∠PRQ = 110° …….(2)
समीकरण (1) व समीकरण (2) को जोड़ने पर,
∠PQR + ∠QPR + ∠PRQ + ∠PRQ = 245° …(3)
परन्तु ΔPQR में,
∠PQR + ∠QPR +∠PRQ = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
समीकरण (3) से (4) को घटाने पर,
∠PRQ = 65°
अतः ∠PRQ = 65°

Question - 2 : - दी गई आकृति में, ∠X = 62° और ∠XYZ = 54° है। यदि YO और ZO क्रमशः ΔXYZ के ∠XYZ और ∠XZY के समद्विभाजक हैं तो ∠OZY और ∠YOZ ज्ञात कीजिए।

Answer - 2 : -

ΔXYZ में,
∠X + ∠XYZ + ∠XZY = 180° ( त्रिभुज के अन्त:कोणों का योग 180° होता है)
62° + 54° + ∠XZY = 180°
⇒ ∠XZY = 180° – (62° + 54°) = 180° – 116°
⇒ ∠XZY = 64°
YO, ∠XYZ का और ZO, ∠XZY का समद्विभाजक है।
∠OYZ = ∠XYZ और ∠OZY =  ∠XZY
⇒ ∠OYZ =  x 54° और ∠OZY =  x 64°
⇒ ∠OYZ = 27° और ∠OZY = 32°
तब, ΔOYZ में, ∠OYZ + ∠OZY + ∠YOZ = 180°
(त्रिभुज के अन्त:कोणों का योग 180° होता है।)
27° + 32° + ∠YOZ = 180°
⇒ ∠YOZ = 180° – (27° + 32°) = 180° – 59°
⇒ ∠YOZ = 121°
अतः ∠OZY = 32°
तथा ∠YOZ = 121°

Question - 3 : - दी गई आकृति में, यदि AB || DE, ∠BAC = 35° और ∠CDE = 53° है तो ∠DCE ज्ञात कीजिए।

Answer - 3 : -

AB || DE और ऋजु रेखा AE इन्हें काटती है।
तब, ∠BAE = ∠AED (एकान्तर कोण)
परन्तु ∠BAE = ∠BAC और ∠AED = ∠CED
∠BAC = ∠CED
⇒ 35° = ∠CED
⇒ ∠CED = 35°
तब, ΔCDE में,
∠CDE + ∠CED + ∠DCE = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
⇒ 53° + 35° + ∠DCE = 180°
⇒ ∠DCE = 180° – (53° + 35°) = 180° – 88° = 92°
अतः ∠DCE = 92°

Question - 4 : - दी गई आकृति में यदि रेखाएँ PQ और RS बिन्दु T पर इस प्रकार प्रतिच्छेद करती हैं कि ∠PRT = 40°, ∠RPT = 95° और ∠TSQ = 75° है तो ∠SQT ज्ञात कीजिए।

Answer - 4 : -

ΔPRT में,
∠PRT + ∠RPT + ∠PTR = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
⇒ 40° + 95° + ∠PTR = 180°
⇒ ∠PTR = 180° – (95° + 40°) = 180° – 135°
⇒ ∠PTR = 45°
ऋजु रेखाएँ PQ और RS परस्पर बिन्दु T पर प्रतिच्छेद करती हैं।
∠QTS = ∠PTR (शीर्षाभिमुख कोण)
∠QTS = 45°
∠PTR = 45°
अब, ΔQTS में, ∠QTS + ∠TSQ + ∠SQT = 180°
(त्रिभुज के अन्त:कोणों का योग 180° होता है।)
45° + 75° + ∠SQT = 180°
⇒ ∠SQT = 180° – (45° + 75°) = 180° – 120° = 60°
अतः
∠SQT = 60°

Question - 5 : - दी गई आकृति में, यदि PQ ⊥ PS, PQ || SR, ∠SQR = 28° और ∠QRT = 65° है तो x और y का मान ज्ञात कीजिए।

Answer - 5 : -

ΔQRS में ∠QRT बहिष्कोण है।
∠SQR + ∠QSR = ∠QRT (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
28° + ∠QSR = 65°
⇒ ∠QSR = 65° – 28° = 37°
अब, PQ || SR और QS एक तिर्यक प्रतिच्छेदी रेखा है,
∠PQS = ∠QSR (एकान्तर कोण)
x = 37°
PQ ⊥ PS
∠P = 90°
ΔPQS में ∠P + ∠PQS + ∠PSQ = 180° (त्रिभुज के अन्त: कोणों का योग 180° होता है।)
90° + x + y = 180°
⇒ x + y = 90°
⇒ 37° + y = 90°
⇒ y = 90° – 37° = 53°
x = 37° तथा y = 53°

Question - 6 : - दी गई आकृति में ΔPQR की भुजा QR को बिन्दु S तक बढ़ाया P गया है। यदि ∠PQR और ∠PRS के समद्विभाजक बिन्दु T पर मिलते हैं तो सिद्ध कीजिए कि ∠QTR =  ∠QPR

Answer - 6 : -

ΔPQR में,
PQR + PRQ + QPR = 180°
तथा ΔTQR में,
TQR + QRT + QTR = 180° (त्रिभुज के अन्त:कोणों का योग 180° होता है।)
TQR + QRT + QTR = PQR + PRQ + QPR
TQR + (PRQ + PRT) + QTR = PQR + PRQ + QPR [ QRT = PRQ + PRT]
TQR + PRQ + PRT + QTR = PQR + PRQ + QPR
TQR + PRT + QTR = PQR + QPR …….(1)
QT,
PQR का समद्विभाजक है।
TQR = PQR PQR = 2 TQR ……..(2)

समीकरण (1) वे समीकरण (2) से,
TQR + PRT + QTR = 2 TQR + QPR
PRT + QTR = TQR + QPR
RT,
PRS का समद्विभाजक है।
PRT = PRS

और PRS, ΔPQR का बहिष्कोण है।
PRS = PQR + QPR (किसी त्रिभुज का एक बहिष्कोण उसके अन्तः अभिमुख कोणों के योगफल के बराबर होता है।)
PRS = 2 TQR + QPR [समीकरण (2) से] …(4)
PRT = PRS = (2 TQR + QPR) [समीकरण (4) से

PRT = TQR + QPR …(5)

समीकरण (3) में से समीकरण (5) को घटाने पर,
QTR = QPR – QPR

QTR = QPR

Proved.

Free - Previous Years Question Papers
Any questions? Ask us!
×