MENU

Chapter 3 Matrices Ex 3.1 Solutions

Question - 1 : -

Answer - 1 : -


Question - 2 : -

 If a matrix has 24 elements, whatare possible orders it can order? What, if it has 13 elements?

Answer - 2 : -

Since, a matrix having  elementis of order 

(i) Therefore, there are 8 possible matrices having 24elements of orders 

1 x 24, 2 x 12, 3 x 8, 4 x 6, 24 x 1, 12 x 2, 8 x 3, 6 x 4.

(ii) Prime number 13 = 1 x 13 and 13 x 1

Therefore, there are 2 possible matrices of order 1 x 13(Row matrix) and 13 x 1 (Column matrix).

Question - 3 : -

If a matrix has 18 elements, whatare the possible orders it can have? What if has 5 elements?

Answer - 3 : -

Since, a matrix having  elementis of order 

(i) Therefore, there are 6 possible matrices having 18elements of orders 1 x 18, 2 x 9, 3 x 6, 18 x 1, 9 x 2, 6 x 3.

(ii) Prime number 5 = 1 x 5 and 5 x 1

Therefore, there are 2 possible matrices of order 1 x 5 (Rowmatrix) and 5 x 1 (Column matrix).

Question - 4 : -

Construct a 2 x 2 matrix A =  whoseelements are given by:

Answer - 4 : -

(i)

(ii) 

(iii) 

Solution

(i) Given:  ……….(i)

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

A2x 2 = 

(ii) Given: ……….(i)

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

A2x 2 = 

(iii) Given:  ……….(i)

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

 A2 x 2 = 

Question - 5 : - Constructa 3 x 4 matrix, whose elements are given by:

Answer - 5 : -

(i) 

(ii) 

Solution

(i) Given:  ……….(i)

Putting  ineq. (i) 

Putting  ineq. (i)

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

A3 x 4 = 

(ii) Given:  ……….(i)

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

Putting  ineq. (i) 

A3 x 4 = 

Question - 6 : - Findthe values of  and  fromthe following equations:

Answer - 6 : -

(i) 

(ii) 

(iii)  

Solution

(i)Given:  

By definition of Equal matrices, 

(ii) 

Equating corresponding entries, https://statics.coolgyan.org/12/maths/ncert/Ex3.1/image077.png ……….(i)

……….(ii)

And    [Fromeq. (i), 

or 

Putting these values of  ineq. (i), we have  and 

or x = 4, y=2, z=0

(iii)  Given:  

Equating corresponding entries,  ……….(i)

  ………. (ii)

And ……….(iii)
Eq. (i) – Eq. (ii) =  9 – 5 = 4

Eq. (i) – Eq. (iii) =  9– 7 = 2

Putting values of and  in eq. (i),

Question - 7 : -

 Find the values of  and  fromthe equation .

Answer - 7 : -

Equating corresponding entries,

 ……….(i)

 ……….(ii)

 ……….(iii)

 ……….(iv)

Eq. (i) – Eq. (ii) = 

Putting  ineq. (i),  
Putting ineq. (iii), 
Putting  ineq. (iv), 
 

Question - 8 : -

A =  isa square matrix if:

Answer - 8 : -

(A)  (B)  (C)  (D)None of these

Solution

By definition of square matrix ,option (C) is correct.


Question - 9 : -

Which of the given values of  and  makethe following pairs of matrices equal:

Answer - 9 : -

(A) 

(B) Not possible to find

(C) 

(D) 

Solution

Equating corresponding sides,

And 

Also 

And 

Since, values of  arenot equal, therefore, no values of  and  existto make the two matrices equal.

Therefore, option (B) is correct.


 

Question - 10 : -

The number of all possible matricesof order 3 x 3 with each entry 0 or 1 is:


Answer - 10 : -

(A) 27               (B) 18

(C) 81                (D) 512

Solution

Since, general matrix of order 3 x 3is 

This matrix has 9 elements.

The number of choices for  is 2 (as 0 or 1 can be used)

Similarly, the number of choices for each other element is 2.

Therefore, total possible arrangements(matrices) = times= 

Therefore, option (D) is correct.

Free - Previous Years Question Papers
Any questions? Ask us!
×