MENU

RD Chapter 7 Adjoint and Inverse of a Matrix Ex 7.1 Solutions

Question - 1 : - Find the adjoint of each of the following matrices:

Verifythat (adj A) A = |A| I = A (adj A) for the above matrices.

Answer - 1 : -

(i) Let

A = 

Cofactors of A are

C11 = 4

C12 = – 2

C21 = – 5

C22 = – 3

(ii) Let

A = 

Therefore cofactors of A are

C11 = d

C12 = – c

C21 = – b

C22 = a

(iii) Let

A = 

Therefore cofactors of A are

C11 = cos α

C12 = – sin α

C21 = – sin α

C22 = cos α

(iv) Let

A = 

Therefore cofactors of A are

C11 = 1

C12 = tan α/2

C21 = – tan α/2

C22 = 1

Question - 2 : - Compute the adjoint of each of the following matrices.

Answer - 2 : -

(i) Let

A = 

Therefore cofactors of A are

C11 = – 3

C21 = 2

C31 = 2

C12 = 2

C22 = – 3

C23 = 2

C13 = 2

C23 = 2

C33 = – 3

(ii) Let

A = 

Cofactors of A

C11 = 2

C21 = 3

C31 = – 13

C12 = – 3

C22 = 6

C32 = 9

C13 = 5

C23 = – 3

C33 = – 1

(iii) Let

A = 

Therefore cofactors of A

C11 = – 22

C21 = 11

C31 = – 11

C12 = 4

C22 = – 2

C32 = 2

C13 = 16

C23 = – 8

C33 = 8

(iv) Let

A = 

Therefore cofactors of A

C11 = 3

C21 = – 1

C31 = 1

C12 = – 15

C22 = 7

C32 = – 5

C13 = 4

C23 = – 2

C33 = 2

Question - 3 : -

Answer - 3 : -

Given

A = 

Therefore cofactors of A

C11 = 30

C21 = 12

C31 = – 3

C12 = – 20

C22 = – 8

C32 = 2

C13 = – 50

C23 = – 20

C33 = 5

Question - 4 : -

Answer - 4 : -

Given

A = 

Cofactors of A

C11 = – 4

C21 = – 3

C31 = – 3

C12 = 1

C22 = 0

C32 = 1

C13 = 4

C23 = 4

C33 = 3

Question - 5 : -

Answer - 5 : -

Given

A = 

Cofactors of A are

C11 = – 3

C21 = 6

C31 = 6

C12 = – 6

C22 = 3

C32 = – 6

C13 = – 6

C23 = – 6

C33 = 3

Question - 6 : -

Answer - 6 : -

Given

A = 

Cofactors of A are

C11 = 9

C21 = 19

C31 = – 4

C12 = 4

C22 = 14

C32 = 1

C13 = 8

C23 = 3

C33 = 2

Question - 7 : -

Find theinverse of each of the following matrices:

Answer - 7 : -

(i) The criteria of existence of inverse matrix is thedeterminant of a given matrix should not equal to zero.

Now, |A| = cos θ (cos θ) +sin θ (sin θ)

= 1

Hence, A – 1 exists.

Cofactors of A are

C11 = cos θ

C12 = sin θ

C21 = – sin θ

C22 = cos θ

(ii) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

Now, |A| = – 1 ≠ 0

Hence, A – 1 exists.

Cofactors of A are

C11 = 0

C12 = – 1

C21 = – 1

C22 = 0

(iii) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

(iv) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

Now, |A| = 2 + 15 = 17 ≠ 0

Hence, A – 1 exists.

Cofactors of A are

C11 = 1

C12 = 3

C21 = – 5

C22 = 2

Question - 8 : - Find the inverse of each of the following matrices.

Answer - 8 : -

(i) The criteria of existence of inverse matrix is thedeterminant of a given matrix should not equal to zero.

|A| = 

= 1(6 – 1) – 2(4 – 3) + 3(2 – 9)

= 5 – 2 – 21

= – 18≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 5

C21 = – 1

C31 = – 7

C12 = – 1

C22 = – 7

C32 = 5

C13 = – 7

C23 = 5

C33 = – 1

(ii) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

|A| = 

= 1 (1 + 3) – 2 (– 1 + 2) + 5 (3 + 2)

= 4 – 2 + 25

= 27≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 4

C21 = 17

C31 = 3

C12 = – 1

C22 = – 11

C32 = 6

C13 = 5

C23 = 1

C33 = – 3

(iii) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

|A| = 

= 2(4 – 1) + 1(– 2 + 1) + 1(1 – 2)

= 6 – 2

= – 4≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 3

C21 = 1

C31 = – 1

C12 = + 1

C22 = 3

C32 = 1

C13 = – 1

C23 = 1

C33 = 3

(iv) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

|A| = 

= 2(3 – 0) – 0 – 1(5)

= 6 – 5

= 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 3

C21 = – 1

C31 = 1

C12 = – 15

C22 = 6

C32 = – 5

C13 = 5

C23 = – 2

C33 = 2

(v) The criteria of existence of inverse matrix is thedeterminant of a given matrix should not equal to zero.

|A| = 

= 0 – 1 (16 – 12) – 1 (– 12 + 9)

= – 4 + 3

= – 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 0

C21 = – 1

C31 = 1

C12 = – 4

C22 = 3

C32 = – 4

C13 = – 3

C23 = 3

C33 = – 4

(vi) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

|A| = 

= 0 – 0 – 1(– 12 + 8)

= 4≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = – 8

C21 = 4

C31 = 4

C12 = 11

C22 = – 2

C32 = – 3

C13 = – 4

C23 = 0

C33 = 0

(vii) The criteria of existence of inverse matrix isthe determinant of a given matrix should not equal to zero.

|A| =  – 0 + 0

= – (cos2 α – sin2 α)

= – 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = – 1

C21 = 0

C31 = 0

C12 = 0

C22 = – cos α

C32 = – sin α

C13 = 0

C23 = – sin α

C33 = cos α

Question - 9 : - Find the inverse of each of thefollowing matrices and verify that A-1A = I3.

Answer - 9 : -

(i) We have

|A| = 

= 1(16 – 9) – 3(4 – 3) + 3(3 – 4)

= 7 – 3 – 3

= 1≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 7

C21 = – 3

C31 = – 3

C12 = – 1

C22 = 1

C32 = 0

C13 = – 1

C23 = 0

C33 = 1

(ii) We have

|A| = 

= 2(8 – 7) – 3(6 – 3) + 1(21 – 12)

= 2 – 9 + 9

= 2≠ 0

Hence, A – 1 exists

Cofactors of A are

C11 = 1

C21 = 1

C31 = – 1

C12 = – 3

C22 = 1

C32 = 1

C13 = 9

C23 = – 5

C33 = – 1

Question - 10 : -

For thefollowing pair of matrices verify that (AB)-1 = B-1A-1.

Answer - 10 : -

(i) Given

Hence, (AB)-1 = B-1A-1

(ii) Given

Hence, (AB)-1 = B-1A-1

Free - Previous Years Question Papers
Any questions? Ask us!
×