MENU

RD Chapter 17 Increasing and Decreasing Functions Ex 17.2 Solutions

Question - 1 : -

Find the intervalsin which the following functions are increasing or decreasing.

(i) f (x) = 10 – 6x – 2x2

(ii) f (x) = x2 + 2x – 5

(iii) f (x) = 6 –9x – x2

(iv) f(x) = 2x3 – 12x2 +18x + 15

(v) f (x) = 5 + 36x+ 3x2 – 2x3

(vi) f (x) = 8 + 36x + 3x_2 – 2x_3

(vii) f(x) = 5x_3 – 15x_2 – 120x + 3

(viii) f(x) = x_3 – 6x_2 – 36x + 2

(ix) f(x) = 2x_3 – 15x_2 + 36x + 1

(x) f (x) = 2x_3 + 9x_2 + 12x + 20

Answer - 1 : -

(i)

(ii)

(iii)
(iv)

(v)

Given f (x) = 5 + 36x + 3x2 –2x3

 f’(x)= 36 + 6x – 6x2

For f(x) now we have to find critical point, we must have

 f’(x)= 0

 36+ 6x – 6x2 = 0

 6(–x2 +x + 6) = 0

 6(–x2 +3x – 2x + 6) = 0

 –x2 +3x – 2x + 6 = 0

 x2 –3x + 2x – 6 = 0

 (x– 3) (x + 2) = 0

 x= 3, – 2

Clearly, f’(x) > 0 if –2< x < 3 and f’(x) < 0 if x< –2 and x > 3

Thus, f(x) increases on x  (–2, 3) and f(x) is decreasing on interval (–∞, –2)  (3, ∞)


(vi)

Given f (x) = 8 + 36x + 3x2 – 2x3

Now differentiating with respect to x

 

 f’(x)= 36 + 6x – 6x2

For f(x) we have to find critical point, we must have

 f’(x)= 0

 36+ 6x – 6x2 = 0

 6(–x2 +x + 6) = 0

 6(–x2 +3x – 2x + 6) = 0

 –x2 +3x – 2x + 6 = 0

 x2 –3x + 2x – 6 = 0

 (x– 3) (x + 2) = 0

 x= 3, – 2

Clearly, f’(x) > 0 if –2 < x < 3 and f’(x) < 0 if x< –2 and x > 3

Thus, f(x) increases on x  (–2, 3) and f(x) is decreasing on interval (–∞, 2)  (3, ∞)


(vii)

Given f(x) = 5x3 – 15x2 – 120x +3

Now by differentiating above equation with respect x, we get

 

 f’(x)= 15x2 – 30x – 120

For f(x) we have to find critical point, we must have

 f’(x)= 0

 15x2 –30x – 120 = 0

 15(x2 –2x – 8) = 0

 15(x2 –4x + 2x – 8) = 0

 x2 –4x + 2x – 8 = 0

 (x– 4) (x + 2) = 0

 x= 4, – 2

Clearly, f’(x) > 0 if x < –2 and x > 4 and f’(x) < 0if –2 < x < 4

Thus, f(x) increases on (–∞,–2)  (4, ∞) and f(x) is decreasing oninterval x  (–2,4)


(viii) 

Given f (x) = x3 – 6x2 – 36x + 2

 

 f’(x)= 3x2 – 12x – 36

For f(x) we have to find critical point, we must have

 f’(x)= 0

 3x2 –12x – 36 = 0

 3(x2 –4x – 12) = 0

 3(x2 –6x + 2x – 12) = 0

 x2 –6x + 2x – 12 = 0

 (x– 6) (x + 2) = 0

 x= 6, – 2

Clearly, f’(x) > 0 if x < –2 and x > 6 and f’(x) < 0if –2< x < 6

Thus, f(x) increases on (–∞,–2)  (6, ∞) and f(x) is decreasing oninterval x  (–2,6)


(ix) 

Given f (x) = 2x3 – 15x2 + 36x +1

Now by differentiating above equation with respect x, we get

 

 f’(x)= 6x2 – 30x + 36

For f(x) we have to find critical point, we must have

 f’(x)= 0

 6x2 –30x + 36 = 0

 6(x2 – 5x + 6) = 0

 6(x2 –3x – 2x + 6) = 0

 x2 –3x – 2x + 6 = 0

 (x– 3) (x – 2) = 0

 x= 3, 2

Clearly, f’(x) > 0 if x < 2 and x > 3 and f’(x) < 0if 2 < x < 3

Thus, f(x) increases on (–∞, 2)  (3, ∞) and f(x) is decreasing oninterval x  (2,3)


(x) 

Given f (x) = 2x3 + 9x2 + 12x +20

Differentiating above equation we get

 

 f’(x)= 6x2 + 18x + 12

For f(x) we have to find critical point, we must have

 f’(x)= 0

 6x2 +18x + 12 = 0

 6(x2 +3x + 2) = 0

 6(x2 +2x + x + 2) = 0

 x2 +2x + x + 2 = 0

 (x+ 2) (x + 1) = 0

 x= –1, –2

Clearly, f’(x) > 0 if –2 < x < –1 and f’(x) < 0 if x< –1 and x > –2

Thus, f(x) increases on x  (–2,–1) and f(x) is decreasing on interval (–∞, –2)  (–2, ∞)

Question - 2 : - Determine the values of x for which the function f(x) = x2 – 6x + 9 is increasing or decreasing. Also, find the coordinates of the point on the curve y = x2 – 6x + 9 where the normal is parallel to the line y = x + 5.

Answer - 2 : -

Given f(x) = x2 – 6x + 9

 

 f’(x)= 2x – 6

 f’(x)= 2(x – 3)

For f(x) let us find critical point, we must have

 f’(x)= 0

 2(x– 3) = 0

 (x– 3) = 0

 x= 3

Clearly, f’(x) > 0 if x > 3 and f’(x) < 0 if x < 3

Thus, f(x) increases on (3, ∞) and f(x) is decreasing oninterval x  (–∞,3)

Now, let us find coordinates of point

Equation of curve is f(x) = x2 – 6x + 9

Slope of this curve is given by

Question - 3 : - Find the intervals in which f(x) = sin x – cos x, where 0 < x < 2π is increasing or decreasing.

Answer - 3 : -


Question - 4 : -

Show that f(x) = e2x isincreasing on R.

Answer - 4 : -

Given f (x) = e2x

 

 f’(x)= 2e2x

For f(x) to be increasing, we must have

 f’(x)> 0

 2e2x >0

 e2x >0

Since, the value of e lies between 2 and 3

So, whatever be the power of e (that is x in domain R) will begreater than zero.

Thus f(x) is increasing on interval R

Question - 5 : -

Show that f (x) = e1/x,x ≠ 0 is a decreasing function for all x ≠ 0.

Answer - 5 : -


Question - 6 : -

Show that f(x) =loga x, 0 < a < 1 is a decreasing function for all x >0.

Answer - 6 : -


Question - 7 : -

Show that f(x) =sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neitherincreasing nor decreasing in (0, π).

Answer - 7 : -


Question - 8 : -

Show that f(x) =log sin x is increasing on (0, π/2) and decreasing on (π/2, π).

Answer - 8 : -



Question - 9 : -

Show that f(x) = x– sin x is increasing for all x ϵ R.

Answer - 9 : -

Given f (x) = x – sin x

 

 f’(x)= 1 – cos x

Now, as given x ϵ R

 –1< cos x < 1

 –1> cos x > 0

 f’(x)> 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval x  R

Question - 10 : -

Show that f(x) = x3 –15x2 + 75x – 50 is an increasing function for allx ϵ R.

Answer - 10 : -

Given f(x) = x3 – 15x2 + 75x –50

 

 f’(x)= 3x2 – 30x + 75

 f’(x)= 3(x2 – 10x + 25)

 f’(x)= 3(x – 5)2

Now, as given x ϵ R

 (x– 5)2 > 0

 3(x– 5)2 > 0

 f’(x)> 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval x  R

Free - Previous Years Question Papers
Any questions? Ask us!
×