MENU

RD Chapter 2 Functions Ex 2.2 Solutions

Question - 1 : -

Find gof and fog when f: R → R and g : R → R isdefined by 

(i) f(x) = 2x + 3 and  g(x) = x2 + 5.

(ii) f(x) = 2x + x2 and  g(x)= x3

(iii) f (x) = x2 + 8 and g(x) =3x3 + 1

(iv) f (x) = x and g(x) = |x| 

(v) f(x) = x2 + 2x − 3 and  g(x) =3x − 4 

(vi) f(x) = 8x3 and  g(x) = x1/3

Answer - 1 : -

(i)Given, f: R → R and g: R → R

So, gof: R → R and fog: R → R

Also given that f(x) =2x + 3 and g(x) = x2 + 5

Now, (gof) (x) = g (f (x))

= g (2x +3)

= (2x + 3)2 + 5

= 4x2+ 9 + 12x +5

=4x2+ 12x + 14

Now, (fog) (x) = f (g(x))

= f (x2 + 5)

= 2 (x2 + 5) +3

= 2 x2+ 10 + 3

= 2x2 + 13

(ii)Given, f: R → R and g: R → R

so, gof: R → R and fog: R → R

f(x) =2x + x2 and g(x) = x3

(gof) (x)= g (f (x))

= g (2x+x2)

= (2x+x2)3

Now, (fog) (x)= f (g (x))

= f (x3)

= 2 (x3)+ (x3)2

= 2x+x6

(iii)Given, f: R → R and g: R → R

So, gof: R → R and fog: R → R

f(x) = x2 +8  and g(x) = 3x3 + 1

(gof) (x)= g (f (x))

= g (x2 + 8)

= 3 (x2+8)3 + 1

Now, (fog) (x)= f (g (x))

= f (3x3 + 1)

= (3x3+1)2 + 8

= 9x6 + 6x+ 1+ 8

= 9x+6x+ 9

(iv)Given, f: R → R and g: R → R

So, gof: R → R and fog: R → R

f(x)= x and g(x) = |x|

(gof) (x)= g (f (x))

= g (x)

= |x|

Now (fog) (x)= f (g (x))

= f (|x|)

= |x|

(v)Given, f: R → R and g: R → R

So, gof: R → R and fog: R → R

f(x) = x2 +2x − 3 and g(x) = 3x − 4

(gof) (x)= g (f(x))

= g (x+2x − 3)

= 3 (x+2x − 3) − 4

= 3x+ 6x − 9 − 4

= 3x+6x − 13

Now, (fog) (x)= f (g (x))

= f (3x − 4)

= (3x − 4)+2 (3x − 4) −3

= 9x+16 − 24x + 6x – 8 − 3

= 9x−18x + 5

(vi)Given, f: R → R and g: R → R

So, gof: R → R and fog: R → R

f(x) = 8x3 and g(x)= x1/3

(gof) (x)= g (f (x))

= g (8x3)

= (8x3)1/3

= [(2x)3]1/3

= 2x

Now, (fog) (x)= f (g (x))

= f (x1/3)

= 8 (x1/3)3

= 8x

Question - 2 : - Let f = {(3, 1), (9, 3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}. Show that gof and fog are both defined. Also, find fog and gof.

Answer - 2 : -

Given f = {(3, 1), (9,3), (12, 4)} and g = {(1, 3), (3, 3) (4, 9) (5, 9)}

f : {3, 9, 12} → {1, 3, 4} and g : {1, 3, 4, 5} → {3, 9}

Co-domainof f is a subset of the domain of g.

So, gof exists and gof: {3, 9, 12} → {3, 9}

(gof) (3) =g (f (3)) = g (1) = 3

(gof) (9) =g (f (9)) = g (3) = 3

(gof) (12) =g (f (12)) = g (4) = 9

 gof ={(3, 3), (9, 3), (12, 9)}

Co-domainof g is a subset of the domain of f.

So, fog exists and fog: {1, 3, 4, 5} → {3, 9, 12}

(fog) (1) =f (g (1)) = f (3) = 1

(fog) (3) =f (g (3)) = f (3) = 1

(fog) (4) =f (g (4)) = f (9) = 3

(fog) (5) =f (g (5)) = f (9) = 3

 fog ={(1, 1), (3, 1), (4, 3), (5, 3)}

Question - 3 : - Let f = {(1, −1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6), (4, 8)}. Show that gof is defined while fog is not defined. Also, find gof.

Answer - 3 : -

Given f = {(1,−1), (4, −2), (9, −3), (16, 4)} and g = {(−1, −2), (−2, −4), (−3, −6),(4, 8)}

f: {1, 4, 9, 16} → {-1, -2, -3, 4} and g: {-1, -2, -3, 4} → {-2, -4, -6,8}

Co-domainof f = domain of g

So, gof exists and gof: {1, 4, 9, 16} → {-2, -4, -6, 8}

(gof) (1) = g (f (1)) = g (−1) = −2

(gof) (4) = g (f (4))= g (−2) = −4

(gof) (9) = g (f (9)) = g (−3) = −6

(gof) (16) =g (f (16)) = g (4) = 8

So, gof = {(1, −2), (4, −4), (9, −6), (16, 8)}

But the co-domainof g is not same as the domain of f.

So, fog does not exist.

Question - 4 : -
Let A = {a, b, c}, B = {u, v, w} and let f and g be two functions from A to B and from B to A, respectively, defined as: f = {(a, v), (b, u), (c, w)}, g = {(u, b), (v, a), (w, c)}.
Show that f and g both are bijections and find fog and gof.

Answer - 4 : -

Given f ={(a, v), (b, u), (c, w)}, g = {(u, b),(v, a), (w, c)}.

Also given that A = {a, b, c}, B = {u, v, w}

Now we have to show fand g both are bijective.

Consider f ={(a, v), (b, u), (c, w)} and f: A → B

Injectivity of f: No two elements of A have the same image in B.

So, f is one-one.

Surjectivity of f: Co-domain of f = {u, v, w}

Range of f = {u, v, w}

Both are same.

So, f is onto.

Hence, f is a bijection.

Now consider g ={(u, b), (v, a), (w, c)} and g: B → A

Injectivity of g: No two elements of B  have the same imagein A.

So, g is one-one.

Surjectivity of g: Co-domain of g = {a, b, c}

Range of g = {a, b, c}

Both are the same.

So, g is onto.

Hence, g is a bijection.

Now we have to findfog,

we know that Co-domain of g is same as the domain of f.

So, fog exists and fog:{u v, w} → {u, v, w}

(fog) (u) = f (g (u)) = f (b) = u

(fog) (v) = f (g (v)) = f (a) = v

(fog) (w) = f (g (w)) = f (c) = w

So, fog = {(u, u), (v, v), (w, w)}

Now we have to findgof,

Co-domain of f is same as the domain of g.

So, fog exists and gof:{a, b, c} → {a, b, c}

(gof) (a) = g (f (a)) = g (v) = a

(gof) (b) = g (f (b)) = g (u) = b

(gof) (c) = g (f (c)) = g (w) = c

So, gof = {(a, a), (b, b), (c, c)}

Question - 5 : -

Find fog (2) and gof (1) whenf: R → R; f(x) = x2 + 8and g: R → R; g(x) = 3x3 + 1.

Answer - 5 : -

Givenf: R → R; f(x) = x2 + 8 and g: R → R; g(x)= 3x3 + 1.

Consider(fog) (2) = f (g (2)) 

= f (3 × 2+1) 

= f(3 × 8 + 1)

= f (25)

= 252 +8

= 633

(gof) (1) = g (f (1)) 

= g (1+8) 

= g (9) 

= 3 × 9+1 

= 2188

Question - 6 : -

Let R+ be the set of all non-negative real numbers.If f: R+ → R+ and g : R+ → R+ aredefined as f(x)=x2 and g(x)=+ √x, find fog and gof.Are they equal functions.

Answer - 6 : -

Given f: R+ → R+ and g: R+ → R+

So, fog: R+ → R+ and gof: R+ → R+

Domains of fog and gof are the same.

Now we have to findfog and gof also we have to check whether they are equal or not,

Consider(fog) (x) = f (g (x))

= f (√x)

= √x2

= x

Now consider(gof) (x) = g (f (x))

= g (x2)

= √x2

= x

So, (fog) (x) = (gof) (x),  R+

Hence, fog = gof

Question - 7 : -

Let f: R → R and g: R → R bedefined by f(x) = x2 and g(x) = x + 1.Show that fog ≠ gof.

Answer - 7 : -

Givenf: R → R and g: R → R.

So, the domains of f and g are the same.

Consider(fog) (x) = f (g (x)) 

= f (x + 1)= (x + 1)2 

= x+1 + 2x

Again consider(gof) (x) = g (f (x)) 

= g (x2)= x+ 1

So, fog ≠ gof

Question - 8 : - .

Answer - 8 : -


Question - 9 : -

.

Answer - 9 : -


Question - 10 : -
Consider f : N → N, g : N → N and h : N → R defined as f(x) = 2x, g(y) = 3y + 4 and
h(z)  = sin z for all x, y, z ϵ N.
show tht ho (gof) = (hog) of.

Answer - 10 : -


Free - Previous Years Question Papers
Any questions? Ask us!
×