RD Chapter 5 Algebra of Matrices Ex 5.1 Solutions
Question - 1 : - If a matrix has 8 elements, what are the possible orders it can have? What if it has 5 elements?
Answer - 1 : -
If a matrix is of order m × n elements, it has m n elements. So, if the matrix has 8 elements, we will find the ordered pairs m and n.
m n = 8
Then, ordered pairs m and n will be
m × n be (8 × 1),(1 × 8),(4 × 2),(2 × 4)
Now, if it has 5 elements
Possible orders are (5 × 1), (1 × 5).
Question - 2 : -
Answer - 2 : -
(i)
Now, Comparing with equation (1) and (2)
a22 =4 and b21 = – 3
a22 +b21 = 4 + (– 3)= 1
(ii)
Now, Comparing with equation (1) and (2)
a11 =2, a22 = 4, b11 = 2, b22 = 4
a11 b11 + a22 b22 = 2 × 2 + 4 × 4 =4 + 16 = 20
Question - 3 : - Let A be a matrix oforder 3 × 4. If R1 denotes the first row of A and C2 denotesits second column, then determine the orders of matrices R1 andC2.
Answer - 3 : -
Given A be a matrix of order 3 × 4.
So, A = [ai j] 3×4
R1 = first row of A = [a11, a12,a13, a14]
So, order of matrix R1 = 1 × 4
C2 = second column of
Therefore order of C2 = 3 × 1
Question - 4 : - Construct a 2 ×3matrix A = [aj j] whose elements aj j are given by:
(i) ai j =i × j
(ii) aij = 2i – j
(iii) aij = i + j
(iv) ai j =(i + j)2/2
Answer - 4 : -
(i) Given ai j = i × j
Let A = [ai j]2 × 3
So, the elements in a 2 × 3 matrix are
[a11, a12,a13, a21, a22, a23]
a11 = 1 × 1 = 1
a12 = 1 × 2 = 2
a13 = 1 × 3 = 3
a21 = 2 × 1 = 2
a22 = 2 × 2 = 4
a23 = 2 × 3 = 6
Substituting these values in matrix A we get,
(ii) Given ai j = 2i – j
Let A = [ai j]2×3
So, the elements in a 2 × 3 matrix are
a11, a12, a13, a21,a22, a23
a11 = 2 × 1 – 1 = 2 – 1 = 1
a12 = 2 × 1 – 2 = 2 – 2 = 0
a13 = 2 × 1 – 3 = 2 – 3 = – 1
a21 = 2 × 2 – 1 = 4 – 1 = 3
a22 = 2 × 2 – 2 = 4 – 2 = 2
a23 = 2 × 2 – 3 = 4 – 3 = 1
Substituting these values in matrix A we get,
(iii) Given ai j = i + j
Let A = [a i j] 2×3
So, the elements in a 2 × 3 matrix are
a11, a12, a13, a21,a22, a23
a11 = 1 + 1 = 2
a12 = 1 + 2 = 3
a13 = 1 + 3 = 4
a21 = 2 + 1 = 3
a22 = 2 + 2 = 4
a23 = 2 + 3 = 5
Substituting these values in matrix A we get,
(iv) Given ai j = (i + j)2/2
Let A = [ai j]2×3
So, the elements in a 2 × 3 matrix are
a11, a12, a13, a21,a22, a23
Let A = [ai j]2×3
So, the elements in a 2 × 3 matrix are
a11, a12, a13, a21,a22, a23
a11 =
a12 =
a13 =
a21 =
a22 =
a23 =
Substituting these values in matrix A we get,
Question - 5 : - Construct a 2 × 2matrix A = [ai j] whose elements ai j are given by:
(i) (i + j)2 /2
(ii) ai j =(i – j)2 /2
(iii) ai j =(i – 2j)2 /2
(iv) ai j =(2i + j)2 /2
(v) ai j =|2i – 3j|/2
(vi) ai j =|-3i + j|/2
(vii) ai j =e2ix sin x j
Answer - 5 : -
(i) Given (i + j)2 /2
Let A = [ai j]2×2
So, the elements in a 2 × 2 matrix are
a11, a12, a21, a22
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
(ii) Given ai j = (i – j)2 /2
Let A = [ai j]2×2
So, the elements in a 2 × 2 matrix are
a11, a12, a21, a22
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
(iii) Given ai j = (i – 2j)2 /2
Let A = [ai j]2×2
So, the elements in a 2 × 2 matrix are
a11, a12, a21, a22
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
(iv) Given ai j = (2i + j)2 /2
Let A = [ai j]2×2
So, the elements in a 2 × 2 matrix are
a11, a12, a21, a22
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
(v) Given ai j = |2i – 3j|/2
Let A = [ai j]2×2
So, the elements in a 2×2 matrix are
a11, a12, a21, a22
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
(vi) Given ai j = |-3i + j|/2
Let A = [ai j]2×2
So, the elements in a 2 × 2 matrix are
a11, a12, a21, a22
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
(vii) Given ai j = e2ix sin x j
Let A = [ai j]2×2
So, the elements in a 2 × 2 matrix are
a11, a12, a21, a22,
a11 =
a12 =
a21 =
a22 =
Substituting these values in matrix A we get,
a33 =
a34 =
Substituting these values in matrix A we get,
A =
Multiplying by negative sign we get,
Question - 6 : - Construct a 4 × 3matrix A = [ai j] whose elements ai j are given by:
(i) ai j =2i + i/j
(ii) ai j =(i – j)/ (i + j)
(iii) ai j =i
Answer - 6 : -
(i) Given ai j = 2i + i/j
Let A = [ai j]4×3
So, the elements in a 4 × 3 matrix are
a11, a12, a13, a21,a22, a23, a31, a32, a33, a41, a42, a43
A =
a11 =
a12 =
a13 =
a21 =
a22 =
a23 =
a31 =
a32 =
a33 =
a41 =
a42 =
a43 =
Substituting these values in matrix A we get,
A =
(ii) Given ai j = (i – j)/ (i + j)
Let A = [ai j]4×3
So, the elements in a 4 × 3 matrix are
a11, a12, a13, a21,a22, a23, a31, a32, a33, a41, a42, a43
A =
a11 =
a12 =
a13 =
a21 =
a22 =
a23 =
a31 =
a32 =
a33 =
a41 =
a42 =
a43 =
Substituting these values in matrix A we get,
A =
(iii) Given ai j = i
Let A = [ai j]4×3
So, the elements in a 4 × 3 matrix are
a11, a12, a13, a21,a22, a23, a31, a32, a33, a41, a42, a43
A =
a11 = 1
a12 = 1
a13 = 1
a21 = 2
a22 = 2
a23 = 2
a31 = 3
a32 = 3
a33 = 3
a41 = 4
a42 = 4
a43 = 4
Substituting these values in matrix A we get,
A =
Question - 7 : - Find x, y, a and b if
Answer - 7 : -
Given
Given that two matrices are equal.
We know that if two matrices are equal then the elements of eachmatrices are also equal.
Therefore by equating them we get,
3x + 4y = 2 …… (1)
x – 2y = 4 …… (2)
a + b = 5 …… (3)
2a – b = – 5 …… (4)
Multiplying equation (2) by 2 and adding to equation (1), we get
3x + 4y + 2x – 4y = 2 + 8
⇒ 5x= 10
⇒ x= 2
Now, substituting the value of x in equation (1)
3 × 2 + 4y = 2
⇒ 6+ 4y = 2
⇒ 4y= 2 – 6
⇒ 4y= – 4
⇒ y= – 1
Now by adding equation (3) and (4)
a + b + 2a – b = 5 + (– 5)
⇒ 3a= 5 – 5 = 0
⇒ a= 0
Now, again by substituting the value of a in equation (3), weget
0 + b = 5
⇒ b= 5
∴ a= 0, b = 5, x = 2 and y = – 1
Question - 8 : - Find x, y, a and bif
Answer - 8 : -
We know that if two matrices are equal then the elements of eachmatrices are also equal.
Given that two matrices are equal.
Therefore by equating them we get,
2a + b = 4 …… (1)
And a – 2b = – 3 …… (2)
And 5c – d = 11 …… (3)
4c + 3d = 24 …… (4)
Multiplying equation (1) by 2 and adding to equation (2)
4a + 2b + a – 2b = 8 – 3
⇒ 5a= 5
⇒ a= 1
Now, substituting the value of a in equation (1)
2 × 1 + b = 4
⇒ 2+ b = 4
⇒ b= 4 – 2
⇒ b= 2
Multiplying equation (3) by 3 and adding to equation (4)
15c – 3d + 4c + 3d = 33 + 24
⇒ 19c= 57
⇒ c= 3
Now, substituting the value of c in equation (4)
4 × 3 + 3d = 24
⇒ 12+ 3d = 24
⇒ 3d= 24 – 12
⇒ 3d= 12
⇒ d= 4
∴ a= 1, b = 2, c = 3 and d = 4
Question - 9 : - Find the values ofa, b, c and d from the following equations:
Answer - 9 : -
Given
We know that if two matrices are equal then the elements of eachmatrices are also equal.
Given that two matrices are equal.
Therefore by equating them we get,
2a + b = 4 …… (1)
And a – 2b = – 3 …… (2)
And 5c – d = 11 …… (3)
4c + 3d = 24 …… (4)
Multiplying equation (1) by 2 and adding to equation (2)
4a + 2b + a – 2b = 8 – 3
⇒ 5a= 5
⇒ a= 1
Now, substituting the value of a in equation (1)
2 × 1 + b = 4
⇒ 2+ b = 4
⇒ b= 4 – 2
⇒ b= 2
Multiplying equation (3) by 3 and adding to equation (4)
15c – 3d + 4c + 3d = 33 + 24
⇒ 19c= 57
⇒ c= 3
Now, substituting the value of c in equation (4)
4 × 3 + 3d = 24
⇒ 12+ 3d = 24
⇒ 3d= 24 – 12
⇒ 3d= 12
⇒ d= 4
∴ a= 1, b = 2, c = 3 and d = 4
Question - 10 : -
Answer - 10 : -