MENU

RD Chapter 1 Relations Ex 1.1 Solutions

Question - 1 : -
Let A be the set of all human beings in a town at a particular time. Determine whether of the following relation is reflexive, symmetric and transitive:
(i) R = {(x, y): x and y work at the same place}
(ii) R = {(x, y): x and y live in the same locality}
(iii) R = {(x, y): x is wife of y}
(iv) R = {(x, y): x is father of y}

Answer - 1 : -

(i) Given R = {(x, y): x and y work at the same place}
Now we have to check whether the relation is reflexive:
Let x be an arbitrary element of R. 
Then, x ∈R   
⇒ x and x work at the same place is true since they are the same.
⇒(x, x) ∈R [condition for reflexive relation]
So, R is a reflexive relation.
Now let us check Symmetric relation:
Let (x, y) ∈R
⇒x and y work at the same place [given]
⇒y and x work at the same place
⇒(y, x) ∈R
So, R is a symmetric relation.
Transitive relation:
Let (x, y) ∈R and (y, z) ∈R. 
Then, x and y work at the same place. [Given]
y and z also work at the same place. [(y, z) ∈R]
⇒ x, y and z all work at the same place.
⇒x and z work at the same place.
⇒ (x, z) ∈R
So, R is a transitive relation.
Hence R is reflexive, symmetric and transitive.

(ii) Given R = {(x, y): x and y live in the same locality}
Now we have to check whether the relation R is reflexive, symmetric and transitive.
Let x be an arbitrary element of R. 
Then, x ∈R
It is given that x and x live in the same locality is true since they are the same.
So, R is a reflexive relation.
Symmetry:
Let (x, y) ∈ R
⇒ x and y live in the same locality [given]
⇒ y and x live in the same locality
⇒ (y, x) ∈ R 
So, R is a symmetric relation.
Transitivity:
Let (x, y) ∈R and (y, z) ∈R. 
Then,
x and y live in the same locality and y and z live in the same locality
⇒ x, y and z all live in the same locality
⇒ x and z live in the same locality 
⇒ (x, z) ∈ R
So, R is a transitive relation.
Hence R is reflexive, symmetric and transitive.

(iii) Given R = {(x, y): x is wife of y}
Now we have to check whether the relation R is reflexive, symmetric and transitive.
First let us check whether the relation is reflexive:
Let x be an element of R. 
Then, x is wife of x cannot be true.
⇒ (x, x) ∉R
So, R is not a reflexive relation.
Symmetric relation:
Let (x, y) ∈R
⇒ x is wife of y 
⇒ x is female and y is male
⇒ y cannot be wife of x as y is husband of x
⇒ (y, x) ∉R  
So, R is not a symmetric relation.
Transitive relation:
Let (x, y) ∈R, but (y, z) ∉R
Since x is wife of y, but y cannot be the wife of z, y is husband of x.
⇒ x is not the wife of z
⇒(x, z) ∈R
So, R is a transitive relation.

(iv) Given R = {(x, y): x is father of y}
Now we have to check whether the relation R is reflexive, symmetric and transitive.
Reflexivity:
Let x be an arbitrary element of R. 
Then, x is father of x cannot be true since no one can be father of himself.
So, R is not a reflexive relation.
Symmetry: 
Let (x, y) ∈R
⇒ x is father of y
⇒ y is son/daughter of x
⇒ (y, x) ∉R 
So, R is not a symmetric relation.
Transitivity:
Let (x, y) ∈R and (y, z) ∈R. 
Then, x is father of y and y is father of z
⇒ x is grandfather of z
⇒ (x, z) ∉R
So, R is not a transitive relation.

Question - 2 : -
Three relations R1, R2 and R3 are defined on a set A = {a, b, c} as follows:
R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c, b), (c, c)}
R2 = {(a, a)}
R3 = {(b, c)}
R4 = {(a, b), (b, c), (c, a)}.
Find whether or not each of the relations R1, R2, R3, R4 on A is (i) reflexive (ii) symmetric and (iii) transitive.

Answer - 2 : -

(i) Consider R1

Given R1 = {(a, a), (a, b), (a, c), (b, b), (b, c), (c, a), (c,b), (c, c)}

Now we have check R1 isreflexive, symmetric and transitive

Reflexive:

Given (a, a), (b, b)and (c, c) R1

So, R1 isreflexive.

Symmetric:

We see that the ordered pairs obtained by interchanging the components of R1 arealso in R1.

So, R1 is symmetric.

Transitive:

Here, (a, b)
R1, (b, c)R1 and also (a, c)R1

So, R1 istransitive.

(ii) Consider R2

Given R2 ={(a, a)}

Reflexive: 

Clearly (a,a) R2.

So, R2 isreflexive.

Symmetric: 

Clearly (a,a) 

 (a, a) R.

So, R2 issymmetric.

Transitive: 

R2 isclearly a transitive relation, since there is only one element in it.

(iii) Consider R3

Given R3 = {(b, c)}

Reflexive:

Here,(b, b)
 R3 neither (c, c)  R3

So, R3 isnot reflexive.

Symmetric:

Here, (b, c) 
R3, but (c,b) R3

So, Risnot symmetric.

Transitive:

Here, R3 has only two elements.

Hence, R3 istransitive.

(iv) Consider R4

Given R4 = {(a, b), (b, c), (c, a)}.

Reflexive:

Here, (a, a) 
 R4, (b, b) R4 (c, c) R4

So, R4 is not reflexive.

Symmetric:

Here, (a, b)
 R4, but (b,a)  R4.

So, R4 is not symmetric

Transitive:

Here, (a, b)
R4, (b, c)R4, but (a, c)R4

So, R4 is not transitive.

Question - 3 : -

Test whether the following relation R1, R2,and Rare (i) reflexive (ii) symmetric and (iii) transitive:

(i) R1 on Q0 defined by (a, b) R1  a = 1/b.

(ii) R2 on Z defined by (a, b) R2  |a – b| ≤ 5

(iii) Ron R defined by (a, b)  R3  a2 –4ab + 3b2 = 0.

Answer - 3 : -

(i) Given R1 on Q0 definedby (a, b) R1  a = 1/b.

Reflexivity:

Let a be an arbitrary element of R1.

Then, a  R1

 a ≠1/a for all a  Q0

So, R1 is not reflexive.

Symmetry:

Let (a, b) 
 R1 

Then,(a, b)  R1

Therefore we can write‘a’ as a =1/b

b = 1/a

(b, a)  R1

So, R1 is symmetric.

Transitivity:

Here, (a, b) 
R1 and (b, c) R2

a = 1/b and b = 1/c

a = 1/ (1/c) = c

a ≠ 1/c

(a, c)  R1

So, R1 is not transitive.

 

(ii) Given R2 on Z definedby (a, b) R2  |a – b| ≤ 5

Now we have checkwhether R2 is reflexive, symmetric and transitive.

Reflexivity:

Let a be anarbitrary element of R2.

Then, a  R2

On applying the givencondition we get,

 | a−a | = 0 ≤ 5

So, R1 is reflexive.

Symmetry:

Let (a, b)  R2

 |a−b| ≤ 5                  [Since, |a−b| = |b−a|]

 |b−a| ≤ 5

 (b, a)  R2

So, R2 is symmetric.

Transitivity:

Let (1, 3)  R2 and (3, 7) R2

|1−3|≤5 and |3−7|≤5

But |1−7| 

 (1, 7)  R2

So, R2 is not transitive.

(iii) Given Ron R definedby (a, b)  R3  a2 –4ab + 3b2 = 0.

Now we have checkwhether R2 is reflexive, symmetric and transitive.

Reflexivity:

Let a be anarbitrary element of R3.

Then, a  R3

 a− 4a × a+ 3a2= 0 

So, R3 is reflexive

Symmetry:

Let (a, b)  R3

 a2−4ab+3b2=0

But b2−4ba+3a2≠0 for all a, b  R

So, R3 is not symmetric.

Transitivity:

Let (1, 2)  R3 and (2, 3)  R3

 1 − 8 + 6 =0 and 4 – 24 + 27 = 0

But 1 – 12+ 9 ≠ 0

So, R3 is not transitive.

Question - 4 : - Let A = {1, 2, 3}, and let R1 ={(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}, R2 ={(2, 2), (3, 1), (1, 3)}, R3 = {(1, 3), (3, 3)}. Findwhether or not each of the relations R1, R2, R3 onA is (i) reflexive (ii) symmetric (iii) transitive.

Answer - 4 : -

Consider R1

Given R1 = {(1, 1), (1, 3), (3, 1), (2, 2), (2, 1), (3, 3)}

Reflexivity:

Here, (1, 1), (2, 2), (3, 3) 
R

So, R1 is reflexive.

Symmetry:

Here, (2, 1)  R1,

But (1, 2)  R1

So, R1 is not symmetric.

Transitivity:

Here, (2, 1) R1 and (1, 3) R1

But (2, 3) R1 

So, R1 is not transitive.

Now consider R2

Given R2 = {(2, 2), (3, 1), (1, 3)}

Reflexivity:

Clearly, (1, 1) and (3, 3)R2 

So, R2 is not reflexive.

Symmetry:

Here, (1, 3)  R2 and (3, 1)  R2

So, R2 is symmetric.

Transitivity:

Here, (1,3)  R2 and (3,1)  R

But (3, 3) R2

So, R2 is not transitive.

Consider R3

Given R3 = {(1, 3), (3, 3)}

Reflexivity:

Clearly, (1,1)  R3

So, R3 is not reflexive.

Symmetry:

Here, (1, 3)  R3, but (3, 1)  R3

So, R3 is not symmetric.

Transitivity:

Here, (1, 3)  R3 and (3, 3)  R3 

Also, (1, 3)  R3

So, R3 is transitive.

Question - 5 : -

The following relation is defined on the set of real numbers.
(i) aRb if a – b > 0

(ii) aRb iff 1 + a b > 0

(iii) aRb if |a| ≤ b.

Find whether relation is reflexive, symmetric or transitive.

Answer - 5 : -

(i) ConsideraRb if a – b > 0

Now for this relationwe have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be anarbitrary element of R.

Then, a  R

But a −a = 0  0

So, this relation is not reflexive.

Symmetry:

Let (a, b)  R

 a −b > 0

 − (b −a) >0

 b −a < 0

So, the given relation is not symmetric.

Transitivity:

Let (a, b) R and (b, c) R. 

Then, a −b > 0 and b − c > 0

Adding the two, we get

a – b +b − c > 0

 a – c> 0 

 (a, c)  R.

So, the given relation is transitive.

(ii) Consider aRb iff1 + a b > 0

Now for this relationwe have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be anarbitrary element of R.

Then, a  R

1 + a × a > 0

i.e. 1 + a2 > 0           [Since, square of any number is positive]

So, the given relation is reflexive.

Symmetry:

Let (a, b)  R

 1 + ab > 0

 1 + ba > 0

 (b, a)  R

So, the given relation is symmetric.

Transitivity:

Let (a, b) R and (b, c) R

1 + ab > 0 and 1 + b c >0

But 1+ ac  0

 (a, c)  R

So, the given relation is not transitive.

(iii) Consider aRb if|a| ≤ b.

Now for this relationwe have to check whether it is reflexive, transitive and symmetric.

Reflexivity:

Let a be anarbitrary element of R.

Then, a  R                 [Since, |a|=a]

 |a| a

So, R is not reflexive.

Symmetry:

Let (a, b)  R

 |a| ≤ b 

 |b|  a for all a, b  R

 (b, a)  R 

So, R is not symmetric.

Transitivity:

Let (a, b)  R and (b, c)  R

 |a| ≤ b and |b| ≤ c

Multiplying the corresponding sides, we get

|a| × |b| ≤ bc

 |a| ≤ c

 (a, c)  R

Thus, R is transitive. 

Question - 6 : -

Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6}as R = {(a, b): b = a + 1} is reflexive,symmetric or transitive.

Answer - 6 : -

Given R ={(a, b): b = a + 1}

Now for this relationwe have to check whether it is reflexive, transitive and symmetric Reflexivity:

Let a be an arbitraryelement of R.

Then,a = a + 1 cannot be true for all a  A.

 (a, a)  R 

So, R is not reflexive on A.

Symmetry:

Let (a, b)  R

 b = a + 1

 −a = −b + 1

 a = b − 1

Thus, (b, a)  R

So, R is not symmetric on A.

Transitivity: 

Let (1, 2) and (2, 3)  R

 2 = 1 + 1 and 3 

2 + 1  is true.

But 3 ≠ 1+1

 (1, 3)  R

So, R is not transitive on A.

Question - 7 : -

Check whether the relation R on R defined as R = {(ab): a ≤ b3}is reflexive, symmetric or transitive.

Answer - 7 : -

Given R = {(ab): ≤ b3}

It is observed that(1/2, 1/2) in R as 1/2 > (1/2)3 = 1/8

R is not reflexive.

Now,

(1, 2) R (as 1 < 23 = 8)

But,

(2, 1) R (as 2 > 13 = 1)

R is not symmetric.

We have (3, 3/2),(3/2, 6/5) in “R as” 3 < (3/2)3 and 3/2 < (6/5)3

But (3,6/5)  R as 3 > (6/5)3

R is not transitive.

Hence, Ris neither reflexive, nor symmetric, nor transitive.

Question - 8 : - Prove that every identity relation on a set is reflexive, but the converse is not necessarily true.

Answer - 8 : -

Let A be a set.
Then, Identity relation IA=IA is reflexive, since (a, a) ∈ A ∀a
The converse of it need not be necessarily true.

Consider the set A = {1, 2, 3}
Here,
Relation R = {(1, 1), (2, 2) , (3, 3), (2, 1), (1, 3)} is reflexive on A.
However, R is not an identity relation.

Question - 9 : -
If A = {1, 2, 3, 4} define relations on A which have properties of being
(i) Reflexive, transitive but not symmetric
(ii) Symmetric but neither reflexive nor transitive.
(iii) Reflexive, symmetric and transitive.

Answer - 9 : -

(i) The relation on A having properties of being reflexive, transitive, but not symmetric is

R = {(1, 1), (2, 2), (3, 3), (4, 4), (2, 1)}
Relation R satisfies reflexivity and transitivity.
⇒ (1, 1), (2, 2), (3, 3) ∈ R 
And (1, 1), (2, 1) ∈ R ⇒ (1, 1) ∈ R
However, (2, 1) ∈ R, but (1, 2) ∉ R
(ii)  The relation on A having properties of being reflexive, transitive, but not symmetric is

R = {(1, 1), (2, 2), (3, 3), (4, 4), (2, 1)}
Relation R satisfies reflexivity and transitivity.
⇒ (1, 1), (2, 2), (3, 3) ∈ R 
And (1, 1), (2, 1) ∈ R ⇒ (1, 1) ∈ R
However, (2, 1) ∈ R, but (1, 2) ∉ R
(iii) The relation on A having properties of being symmetric, reflexive and transitive is

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)}

The relation R is an equivalence relation on A.

Question - 10 : -

Answer - 10 : -


Free - Previous Years Question Papers
Any questions? Ask us!
×