MENU

RD Chapter 2 Functions Ex 2.4 Solutions

Question - 11 : -

A function f: R → R is defined as f(x)= x3 + 4. Is it a bijection or not? In case it is abijection, find f−1 (3).

Answer - 11 : -

Given thatf: R → R is defined as f(x) = x3 +4

Injectivity of f:

Let x and y be two elements of domain (R),

Such thatf (x) = f (y)

 x3 + 4 = y3 + 4

 x3 = y3

 x = y

So, f isone-one.

Surjectivityof f:

Let y be in the co-domain (R),

Such that f(x) =y.

 x3 +4 = y 

x3 =y – 4

x = (y – 4) in R (domain)

f is onto.

So, f is a bijection and, hence, it is invertible.

Finding f-1:

Let f−1 (x) = y……(1)

 x = f (y)

 x = y+ 4

 x − 4 = y3

y = (x-4)

So, f-1(x) = (x-4)       [from (1)]

f-1 (3)= (3 – 4)

= -1

= -1

Question - 12 : -

Answer - 12 : -


Question - 13 : -

Let A = R - {3} and B = R - {1}. Consider the function  defined by . Show that f is one-one and ontoand hence find .

Answer - 13 : -


Question - 14 : -
Consider the function f ; R+→ [-9, ∞] given by
f(x) = 5x2 + 6x - 9.
 

Answer - 14 : -


Question - 15 : -

Answer - 15 : -


Question - 16 : -

Answer - 16 : -


Question - 17 : -

Answer - 17 : -


Question - 18 : -

Answer - 18 : -


Question - 19 : -

Answer - 19 : -


Question - 20 : -

Answer - 20 : -


Free - Previous Years Question Papers
Any questions? Ask us!
×