MENU
Question -

Consider┬аf:┬аR┬атЖТ┬аR+┬атЖТ [4, тИЮ) givenby┬аf(x) =┬аx2┬а+ 4. Show that┬аf┬аis invertiblewith inverse┬аfтИТ1┬аof┬аf┬аgiven by fтИТ1(x)= тИЪ (x-4) where R+┬аis the set of all non-negative real numbers.



Answer -

Givenf:┬аR┬атЖТ┬аR+┬атЖТ [4, тИЮ) given by┬аf(x) =┬аx2┬а+4.

Now we have to showthat f is invertible,

Consider injectionof┬аf:

Let┬аx┬аand┬аy┬аbe two elements of the domain (Q),

Such that f(x) =f(y)┬а

тЗТ┬аx2┬а+4 = y2┬а+ 4

тЗТ┬аx2┬а=y2

тЗТ┬аx┬а=┬аy┬а┬а ┬а┬а(as┬аco-domain┬аas┬аR+)

So,┬аf┬аisone-one

Now surjectionof┬аf:

Let┬аy┬аbe in the co-domain (Q),

Such that┬аf(x) =y

тЗТ x2┬а+4 = y

тЗТ x2┬а=y тАУ 4

тЗТ x = тИЪ (y-4) in R

тЗТ┬аf┬аis onto.

So,┬аf┬аis a bijection and, hence, it is invertible.

Now we have tofind┬аf-1:

Let┬аfтИТ1┬а(x)┬а=┬аyтАжтАж(1)

тЗТ┬аx┬а=┬аf┬а(y)

тЗТ┬аx┬а=┬аy2┬а+┬а4

тЗТ┬аx┬атИТ┬а4┬а=┬аy2

тЗТ y = тИЪ (x-4)

So, f-1(x)= тИЪ (x-4)

Now substituting thisvalue in (1) we get,

So, f-1(x)= тИЪ (x-4)

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×