Chapter 16 प्रायिकता (Probability) Ex 16.3 Solutions
Question - 1 : - प्रतिदर्श समष्टि S = {ω1, ω2, ω3, ω4, ω5, ω6} के परिणामों के लिए निम्नलिखित में से कौन से प्रायिकता निर्धारण वैध नहीं हैं:
Answer - 1 : -
(a) 0.1 + 0.01 + 0.05 + 0.03 + 0.01 + 0.2 + 0.6 = 1.00
घटनाओं की दी गयी प्रायिकता को योगफल 1 है।
अतः निर्धारित प्रायिकता वैध है।
(b) दी गयी प्रायिकताओं का योगफल
दी गयी प्रायिकता वैध है।
(c) दी हुई प्रायिकताओं का योग’ = 0.1 + 0.1 + 0.3 + 0.4 + 0.5 + 0.6 + 0.7 = 2.7
यह एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।
(d) किसी भी घटना की प्रायिकता ऋणात्मक नहीं हो सकती। यहाँ पर दो प्रायिकताएँ – 0.1 और -0.2 ऋणात्मक हैं।
अतः दी गयी प्रायिकता वैध नहीं है।
(e) दी गयी प्रायिकताओं का योगफल
जो कि एक से अधिक है।
अतः दी गयी प्रायिकता वैध नहीं है।
Question - 2 : - एक सिक्का दो बार उछाला जाता है। कम से कम एक पट् प्राप्त होने की क्या प्रायिकता है?
Answer - 2 : -
दिए हुए परीक्षण का प्रतिदर्श समष्टि
S = {HH, HT, TH, TT}
कुल सम्भावित परिणामों की संख्या = 4
कम से कम एक पट् प्राप्त करने के तरीके TH, HT, TT = 3
एक सिक्के को दो बार उछालने से कम से कम 1 पट् प्राप्त करने की प्रायिकता =
Question - 3 : - एक पासा फेंका जाता है। निम्नलिखित घटनाओं की प्रायिकता ज्ञात कीजिए:
(i) एक अभाज्य संख्या प्रकट होना।
(ii) 3 या 3 से बड़ी संख्या प्रकट होना।
(iii) 1 या 1 से छोटी संख्या प्रकट होना।
(iv) छः से बड़ी संख्या प्रकट होना।
(v) छः से छोटी संख्या प्रकट होना।
Answer - 3 : -
एक पासे को फेंकने में परीक्षण का प्रतिदर्श समष्टि
S = {1, 2, 3, 4, 5, 6}
अर्थात् कुल सम्भावित परिणाम
n(S) = 6
(i) अभाज्य संख्याएँ 2, 3, 5 हैं।
n (A) = 3
Question - 4 : - ताश की एक गड्डी के 52 पत्तों में से एक पत्ता यादृच्छया निकाला गया है।
(a) प्रतिदर्श समष्टि में कितने बिन्दु हैं ?
(b) पत्ते का हुकुम का इक्का होने की प्रायिकता क्या है ?
(c) प्रायिकता ज्ञात कीजिए कि पत्ता
(i) इक्का है
(ii) काले रंग का है।
Answer - 4 : -
(a) ताश की गड्डी में कुल 52 पत्ते होते हैं। जब एक पत्ता निकाला जाता है तो इसके प्रतिदर्श समष्टि में 52 बिन्दु होते हैं।
(b) ताश की गड्डी में हुकुम का एक इक्का होता है। यदि एक पत्ता निकालने की घटना को A से दर्शाया जाए।
n(A) = 1, n(S) = 52
P(A) = P(हुकुम का इक्का ) =
(c) (i) यदि B इक्का निकालने को दर्शाता हो तो
n(B) = 4 [ताश की गड्डी में 4 इक्के होते हैं।]
n(S) = 52
P(B) =
(ii) C काले रंग हुकुम की पत्ते आने की घटना को दर्शाता है।
n(C) = 26 [ ताश की गड्डी में 26 काले पत्ते होते हैं।
n(C) = 52
P(C) =
=
Question - 5 : - एक अनभिनत (unbiased) सिक्का जिसके एक तल पर 1 और दूसरे तल पर 6 अंकित है तथा एक अनभिनत पासा दोनों को उछाला जाता है। प्रायिकता ज्ञात कीजिए कि प्रकट संख्याओं का योग
(i) 3 है
(ii) 12 है।
Answer - 5 : -
एक पासे पर 1 व 6 अंकित है और दूसरे पर 1, 2, 3, 4, 5, 6.
प्रतिदर्श समष्टि = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
(i) दी गयी., संख्याओं का योग 3 घटना (1, 2) से प्राप्त होता है।
अनुकूल परिणामों की संख्या = 1
प्रायिकता जेब प्राप्त संख्याओं का योग 3 है =
(ii) दी गयी संख्याओं को योग घटना (6, 6) से प्राप्त होता है। यहाँ अनुकूल परिणामों की संख्या = 1
प्रायिकता जब प्राप्त संख्याओं का योग 12 है =
Question - 6 : - नगर परिषद् में चार पुरुष के छः स्त्रियाँ हैं। यदि एक समिति के लिए यादृच्छया एक परिषद् सदस्य चुना गया है तो एक स्त्री के चुने जाने की कितनी सम्भावना है ?
Answer - 6 : -
नगर परिषद् में चार पुरुष व छः स्त्रियाँ हैं।
उनमें से किसी एक को चुनने के तरीके = 10
कुल सम्भावित परिणामों की संख्या = 10
कुल 6 स्त्रियाँ हैं। उनमें से एक स्त्री को चुनने के तरीके = 6.
अनुकूल परिणामों की संख्या = 6
एक स्त्री को चुने जाने की प्रायिकता =
=
Question - 7 : - एक अनभिनत सिक्के को चार बार उछाला जाता है और एक व्यक्ति प्रत्येक चित्त पर एक रूपया जीतता है और प्रत्येक पट् पर 1.50 रू हारता है। इस परीक्षण के प्रतिदर्श समष्टि से ज्ञात कीजिए कि आप चार उछालों में कितनी विभिन्न राशियाँ प्राप्त कर सकते हैं। साथ ही इन राशियों से प्रत्येक की प्रायिकता भी ज्ञात कीजिए।
Answer - 7 : -
सिक्के की उछाल में पाँच तरीकों से चित्त प्राप्त कर सकते हैं। जो निम्न प्रकार हैं।
कुल संभावित परिणाम = {HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTT, TTHH, TTHT, TTTH, TTTT}
(i) कोई भी चित्त प्राप्त नहीं होता या चारों पट् प्राप्त होते हैं।
चारों पट् के आने पर हानि = 4 x 1.50 = 6
चार पट् प्राप्त करने के तरीके (TTTT) = 1
कुल सम्भावित परिणाम = 16
चार पट् प्राप्त करने की प्रायिकता =
(ii) जब एक चित्त और 3 पट् प्राप्त होते हैं।
हानि = 3 x 1.50 – 1 x 1 = 4.50 – 1.00 = 3.50 रू
एक चित्त और 3.पट् इस प्रकार आ सकते हैं:
{TTTH, THT, THTT, HTTT}
4 तरीकों से एके चित्त और 3 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
एक चित्त प्राप्त करने की प्रायिकता =
=
(iii) जब 2 चित्त और 2 पट् प्रकट होते हैं।
हानि = 2 x 1.5 – 1 x 2 = 3 – 2 = 1 रू
2 चित्त और 2 पट् इस प्रकार प्राप्त हो सकते हैं।
{ÉHTT, HTHT, HTTH, THHT, THTH, TTHH}
छः तरीकों से 2 चित्त और 2 पट् प्राप्त हो सकते हैं।
कुल सम्भावित परिणाम = 16
2 चित्त प्राप्त करने की प्रायिकता =
=
(iv) जब 3 चित्त और 1 पट् प्रकट होता है, तब
लाभ = 3 x 1 – 1 x 1.5 = 3 – 1.30 = 1.50 रू
3 चित्त प्राप्त करने के तरीके = {HHHT, HHHH, HTHH, THHH}
चार तरीकों से 3 चित्त और 1 पट् प्राप्त होता है।
कुल सम्भावित परिणाम = 16
3 चित्त प्राप्त करने की प्रायिकता =
=
(v) चारों चित्त एक तरीके से प्राप्त कर सकते हैं, तब
लाभ = 4 x 1 = 4 रू
कुल सम्भावित परिणाम = 16
चार चित्त प्राप्त करने की प्रायिकता =
Question - 8 : - तीन सिक्के एक बार उछाले जाते हैं। निम्नलिखित की प्रायिकता ज्ञात कीजिए:
(i) तीन चित्त प्रकट होना
(ii) 2 चित्त प्रकट होना
(iii) न्यूनतम 2 चित्त प्रकट होना
(iv) अधिकतम 2 चित्त प्रकट होना
(v) एक भी’चित्त प्रकट न होना
(vi) 3 पट् प्रकट होना
(vii) तथ्यतः 2पट् प्रकट होना
(viii) कोई भी पट् प्रकट न होना,
(ix) अधिकतम पट् प्रकट होना
Answer - 8 : -
यदि 3 सिक्के उछाले जाते हैं तो परीक्षण का प्रतिदर्श समष्टि
S = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}
कुल सम्भावित परिणाम = 8
(i) तीन चित्त {HHH} एक तरीके से प्रकट होता है।
अत: 3 चित्त प्राप्त करने की प्रायिकता =
(ii) 2 चित्त या 2 चित्त 1 पट् प्राप्त करने के HHT, HTH, THH तीन तरीके हैं।
कुल सम्भावित परिणाम = 8
2 चित्त प्रकट होने की प्रायिकता =
(iii) न्यूनतम 2 चित्त प्राप्त करने के लिए
2 चित्त 1 पट् या 3 चित्त आएंगे
न्यूनतम 2 चित्त HHT, HTH, THH, HHH, चार तरीकों से प्रकट हो सकते हैं।
अतः न्यूनतम 2 चित्त प्रकट होने की प्रायिकता =
= (iv) अधिकतम 2 चित्त, इस प्रकार प्रकट होंगे।
(a) कोई चित्त नहीं या तीन पट्
(b) एक चित्त 2 पट्
(c) 2 चित्त 1 पट्
यह {TTT, HTT, THT, TTH, HHT, HTH, THH} सात तरीकों से प्रकट हो सकते हैं।
कुल संभावित परिणाम = 8
अधिकतम 2 चित्त प्रकट होने की प्रायिकता =
(v) एक भी चित्त न आने का अर्थ है तीन पट् प्रकट होना जो (TTT) एक तरीके से हो सकता है।
कुल संभावित परिणाम = 8
अतः एक भी चित्त न आने की प्रायिकता =
(vi) तीन पट् (TTT) एक तरीके से प्रकट हो सकते हैं।
तीन पट् प्रकट होने की प्रायिकता =
(vii) तथ्यत: 2 सट् (TTH, THT, HTT) तीन तरीकों से प्राप्त हो सकते हैं।
कुल संभावित परिणाम = 8
दो पट् प्रकट होने की प्रायिकता =
(viii) कोई पट् नहीं का अर्थ है तीनों चित्त प्रकट होते हैं तो (HHH) 1 तरीके से ही हो सकता है।
कुल संभावित परिणाम = 8
कोई पट् प्रकट न होने की प्रायिकता =
(ix) अधिकतम दो पट् प्रकट होना = तीनों पट् प्रकट नहीं होते।
तीनों पट् प्रकट होने की प्रायिकता =
अधिकतम दो पट् प्रकट होने की प्रायिकता = 1 – (तीनों पट् प्रकट होने की प्रायिकता)
= 1 –
=
Question - 9 : - यदि किसी घटना A की प्रायिकता
है तो घटना A – नहीं’ की प्रायिकता ज्ञात कीजिए।
Answer - 9 : -
P(A) =
P(A – नहीं) = P (A’) = 1 – P(A)
= 1 –
=
Question - 10 : - शब्द ASSASSINATION’ से एक अक्षर यादृच्छया चुना जाता है। प्रायिकता ज्ञात कीजिए कि चुना गया अक्षर
(i) एक स्वर (vowel) है
(ii) एक व्यंजन (consonant) है।
Answer - 10 : -
शब्द ASSASSINATION में कुल 13 अक्षर हैं जिसमें (AAAIIO) 6 स्वर और (SSSSNNT) 7 व्यंजन है।
n(S) = 13
स्वरों की संख्या = 6
एक स्वर चुनने की प्रायिकता =
(ii) व्यंजनों की संख्या = 7
n(S) = 13
एक व्यंजन चुनने की प्रायिकता =