MENU
Question -

Show that the function f: Q → Q, definedby f(x) = 3x + 5, is invertible. Also, find f−1



Answer -

Givenfunction f: Q → Q, defined by f(x) = 3x + 5

Now we have to showthat the given function is invertible.

Injection of f:

Let x and y be two elements of the domain (Q),

Such that f(x) = f(y)

3x + 5 =3y + 5

3x = 3y

x = y

so, f is one-one.

Surjection of f:

Let y be in the co-domain (Q),

Such that f(x) =y

3x +5 = y 

3x = y – 5

x = (y -5)/3 belongsto Q domain

f is onto.

So, f is a bijection and, hence, it is invertible.

Now we have tofind f-1:

Let f-1(x)= y…… (1)

 x = f(y)

 x = 3y + 5

 x −5 = 3y

y = (x – 5)/3

Now substituting thisvalue in (1) we get

So, f-1(x)= (x – 5)/3

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×