MENU

Chapter 10 वृत्त (Circles ) Ex 10.6 Solutions

Question - 1 : - सिद्ध कीजिए कि दो प्रतिच्छेद करते हुए वृत्तों के केन्द्रों की रेखा दोनों प्रतिच्छेद बिन्दुओं पर समान कोण अन्तरित करती है।

Answer - 1 : -

दिया है : O1 तथा O2 केन्द्रों वाले दो वृत्त एक-दूसरे को दो बिन्दुओं A तथा B पर प्रतिच्छेद करते हैं।
केन्द्र रेखा O1O2 प्रतिच्छेद बिन्दु A पर O1AO2 तथा B पर O1BO2 अन्तरित करती है।


सिद्ध करना है : O1AO2 =O1BO2
उपपत्ति: ΔO1AO2 तथा ΔO1BO2 में,
O1A = O1B (
एक ही वृत्त की त्रिज्याएँ बराबर होती हैं।)
O2A = O2B (
एक ही वृत्त की त्रिज्याएँ बराबर होती हैं।)
O1O2 = O1O2 (
दोनों त्रिभुजों की उभयनिष्ठ भुजा है)
ΔO1AO2 = ΔO1BO2 (S.S.S.
से)
O1AO2 =O1BO2 (C.P.C.T.)
Proved.

Question - 2 : - एक वृत्त की 5 सेमी तथा 11 सेमी लम्बी दो जीवाएँ AB और CD समान्तर हैं और केन्द्रकी विपरीत दिशा में स्थित हैं। यदि AB और CD के बीच की दूरी 6 सेमी हो, तो वृत्त की त्रिज्या ज्ञात कीजिए।

Answer - 2 : - दिया है : O त्रिज्या का एक वृत्त है जिसमें AB तथा CD दो समान्तर जीवाएँ केन्द्र O के विपरीत ओर स्थित हैं जिनकी लम्बाइयाँ क्रमश: 5 सेमी व 11 सेमी हैं। जीवाओं के बीच की (लाम्बिक) दूरी 6 सेमी है अर्थात MON = 6 सेमी जबकि MON ⊥ AB व MON ⊥ CD

Question - 3 : - किसी वृत्त की दो समान्तर जीवाओं की लम्बाइयाँ 6 सेमी और 8 सेमी हैं। यदि छोटी जीवा केन्द्र से 4 सेमी की दूरी पर हो, तो दूसरी जीवा केन्द्र से कितनी दूर है?

Answer - 3 : -


Question - 4 : - मान लीजिए कि कोण ABC का शीर्ष एक वृत्त के बाहर स्थित है और कोण की भुजाएँ वृत्त से बराबर जीवाएँ AD और CE काटती हैं। सिद्ध कीजिए कि 2 ABC जीवाओं AC तथा DE द्वारा केन्द्र पर अन्तरित कोणों के अन्तर का आधा है।

Answer - 4 : -


Question - 5 : - सिद्ध कीजिए कि समचतुर्भुज की किसी भी भुजा को व्यास मानकर खींचा गया वृत्त, उसके विकर्णो के प्रतिच्छेद बिन्दु से होकर जाता है।

Answer - 5 : -

दिया है ABCD एक समचतुर्भुज है जिसमें AC और BD विकर्ण हैं जिनका । प्रतिच्छेद बिन्दु P है।
भुजी BC को व्यास मानकर एक वृत्त खींचा गया है।
सिद्ध करना है: BC को व्यास मानकर खींचा गया वृत्त विकर्मों के प्रतिच्छेद बिन्दु P से होकर जाएगा।
उपपत्ति : ABCD एक समचतुर्भुज है और उसके विकर्ण AC तथा BD परस्पर बिन्दु P पर प्रतिच्छेद करते हैं।
∠CPB = 90°
A CPB एक समकोण त्रिभुज है जिसका कर्ण BC है।
तब समकोण ∆CPB का ∆CPB अर्धवृत्त में स्थित होगा जिसका व्यास BC है।
अत: BC को व्यास मानकर खींचा गया वृत्त बिन्दु P (विकर्मों का प्रतिच्छेद बिन्दु) से होकर जाएगा।
Proved.

Question - 6 : - ABCD एक समान्तर चतुर्भुज है। A, B और C से जाने वाला वृत्त CD(यदि आवश्यक हो तो बढ़ाकर) को E पर प्रतिच्छेद करता है। सिद्ध कीजिए कि AE = AD है।

Answer - 6 : -

दिया है : ABCD एक समान्तर चतुर्भुज है जिसके शीर्षों A, B और C से एक वृत्त खींचा गया है जो भुजा CD को E पर काटता है। सिद्ध करना है :
AE = AD
उपपत्ति : ABCD एक समान्तर चतुर्भुज है, ∠B = ∠D …(1) (समान्तर चतुर्भुज के सम्मुख कोण बराबर होते हैं।)
A, B, C से जाने वाला वृत्त CD को E पर काटता है,
ABCE एक चक्रीय चतुर्भुज है। AED = ∠B …(2)
समीकरण (1) व (2) से,
∠ AED = ∠D (= ∠ADE)
∆ADE में,
∠AED = ∠ADE
∆ADE समद्विबाहु त्रिभुज है जिसमें
AD = AE (समान कोणों की सम्मुख भुजाएँ समान होती हैं।)
अतः AD = AE
Proved.

Question - 7 : -
AC और BD एक वृत्त की जीवाएँ हैं जो परस्पर समद्विभाजित करती हैं। सिद्ध कीजिए :
(i) AC और BD व्यास हैं।
(ii) ABCD एक आयत है।

Answer - 7 : -

दिया है: AC तथा BD एक वृत्त की जीवाएँ हैं जो एक-दूसरे को बिन्दु 0 पर समद्विभाजित करती हैं। सिद्ध करना है :
(i) AC तथा BD वृत्त के व्यास हैं।
(ii) ABCD एक आयत है।
रचना : चतुर्भुज ABCD को पूरा किया।
उपपत्ति : (i) जीवा AC और BD एक-दूसरे को बिन्दु O पर समद्विभाजित करती हैं।
OA = OB = OC = OD
तब, OA, OB, OC और OD एक ऐसे वृत्त की त्रिज्याएँ हैं जिसका केन्द्र O है।
तब, AC = OA + OC = त्रिज्या + त्रिज्या = 2 x त्रिज्या
AC वृत्त का व्यास है।
BD भी O से होकर जाती है, तब BD भी वृत्त का व्यास है।
Proved.
(ii) AC व्यास है, तब ∠B = 90° तथा ∠D = 90° और BD व्यास है,
तब ∠A = 90° तथा ∠C = 90° (अर्द्धवृत्त में बना कोण समकोण होता है।)
तब, ABCD एक ऐसा चतुर्भुज है जिसका प्रत्येक अन्त: कोण 90° है तथा विकर्ण एक-दूसरे को अर्धित करते हैं।
अत: ABCD एक आयत है।
Proved.

Question - 8 : - त्रिभुज ABC के कोणों A, B और C के समद्विभाजक उसके परिवृत्त को क्रमशः बिन्दुओं D, E और F पर प्रतिच्छेदित करते हैं। | सिद्ध कीजिए कि ∆DEF के कोण 90° –  , 90° –  और 90° –  हैं।

Answer - 8 : -


Question - 9 : - दो सर्वांगसम वृत्त परस्पर बिन्दुओं A और B पर प्रतिच्छेद करते हैं। A से होकर कोई रेखाखण्ड PAQइस प्रकार खींचा गया है कि P और २ दोनों वृत्तों पर स्थित हैं। सिद्ध कीजिए कि BP = BQ है।

Answer - 9 : -

दिया है : दो वृत्तों के केन्द्र O1 व O2 हैं और वे बिन्दुओं A और B पर प्रतिच्छेद करते हैं। A से एक रेखा PAQ खींची गई है जो वृत्तों से बिन्दुओं P और Q पर मिलती है।
सिद्ध करना है : रेखाखण्ड BP = रेखाखण्ड BQ
रचना : जीवा AB तथा त्रिज्याएँ O1A, O1B, O1A तथा O2B खींचीं
उपपत्ति : जीवा AB दोनों वृत्तों में उभयनिष्ठ है और दोनों वृत्त सर्वांगसम हैं।
O1 केन्द्र वाले वृत्त का चाप AB = O2 केन्द्र वाले वृत्त का चाप AB
∠AO1B = ∠AOB (सर्वांगसम वृत्तों के समान चाप केन्द्र पर समान कोण अन्तरित करते हैं।)
∠APB = ∠AQB (परिधि पर अन्तरित कोण)
अब : ΔQBP में,
∠APB = ∠AQB (ऊपर सिद्ध हुआ है।)
∠BPQ = ∠BQP
अत: BQ = BP (सम्मुख कोण बराबर होने पर सम्मुख भुजाएँ भी बराबर होती हैं।)
Proved.

Question - 10 : - किसी त्रिभुज ABC में, यदि ∠A का समद्विभाजक तथा BC का लम्बे समद्विभाजक प्रतिच्छेद करें, तो सिद्धकीजिए कि वे ΔABC के परिवृत्त पर प्रतिच्छेद करेंगे।

Answer - 10 : -

दिया है : ΔABC के आधार BC का लम्ब समद्विभाजक XY है।
ABDC, ΔABC का परिवृत्त है। लम्ब समद्विभाजक XY परिवृत्त को D पर काटता है। XY, BC को M पर काटता है।
सिद्ध करना है : ∠A का समद्विभाजक भी बिन्दु D से होकर जाएगा।
रचना : DB तथा DC को मिलाया।
उपपत्ति : XY, BC का लम्ब समद्विभाजक है और यह परिवृत्त को बिन्दु D पर काटता है।
बिन्दु D, परिवृत्त पर भी है और XY पर भी।
ΔBDM और ΔCDM में,
BM = CM (XY, BC का लम्ब समद्विभाजक है।)
∠BMD = ∠CMD (XY ⊥ BC अर्थात प्रत्येक 90°)
MD = MD (उभयनिष्ठ भुजा है।)
ΔBDM = ΔCDM (S.A.S. से)
BD = CD (C.P.C.T.)
बिन्दु D, परिवृत्त पर भी स्थित है।
परिवृत्त में, जीवा BD = जीवा CD
चाप BD= चाप CD (समान चाप किसी वृत्त की समान जीवाएँ काटती हैं।)
चाप BD द्वारा बिन्दु A पर अन्तरित कोण = चाप CD द्वारा बिन्दु A पर अन्तरित कोण
∠BAD = ∠CAD
अत: A का समद्विभाजक AD भी बिन्दु D से होकर जाता है।
Proved.

Free - Previous Years Question Papers
Any questions? Ask us!
×