MENU

Chapter 7 कणों के निकाय तथा घूर्णी गति (System of particles and Rotational Motion) Solutions

Question - 1 : -
एकसमान द्रव्यमान घनत्व के निम्नलिखित पिण्डों में प्रत्येक के द्रव्यमान केन्द्र की अवस्थिति लिखिए –
(a) गोला
(b) सिलिण्डर
(c) छल्ला तथा
(d) घन।
क्या किसी पिण्ड का द्रव्यमान केन्द्र आवश्यक रूप से उस पिण्ड के भीतर स्थित होता है?

Answer - 1 : - गोला, सिलिण्डर, वलय तथा घन का द्रव्यमान केन्द्र उनको ज्यामितीय केन्द्र होता है। नहीं, द्रव्यमान केन्द्र आवश्यक रूप से पिण्ड के भीतर स्थित नहीं होता है, अनेक पिण्डों; जैसे-वलय में, खोखले गोले में, खोखले सिलिण्डर में द्रव्यमान केन्द्र पिण्ड के बाहर होता है, जहाँ कोई पदार्थ नहीं होता है।

Question - 2 : - HCl अणु में दो परमाणुओं के नाभिकों के बीच पृथकन लगभग 1.27 A (1Å = 10-10 m) है। इस अणु के द्रव्यमान केन्द्र की लगभग अवस्थिति ज्ञात कीजिए। यह ज्ञात है कि क्लोरीन का परमाणु हाइड्रोजन के परमाणु की तुलना में 35.5 गुना भारी होता है तथा किसी परमाणु का समस्त द्रव्यमान उसके नाभिक पर केन्द्रित होता है।

Answer - 2 : -


Question - 3 : - कोई बच्चा किसी चिकने क्षैतिज फर्श पर एकसमान चाल υ से गतिमान किसी लम्बी ट्रॉली के एक सिरे पर बैठा है। यदि बच्चा खड़ा होकर ट्रॉली पर किसी भी प्रकार से दौड़ने लगता है, तब निकाय (ट्रॉली + बच्चा) के द्रव्यमान केन्द्र की चाल क्या है?

Answer - 3 : -

चूंकि ट्रॉली एक चिकने क्षैतिज फर्श पर गति कर रही है; अतः फर्श के चिकना होने के कारण निकाय पर क्षैतिज दिशा में कोई बाह्य बल कार्य नहीं करता है। जब बच्चा ट्रॉली पर दौड़ता है तो बच्चे द्वारा ट्रॉली पर

Question - 4 : -
दर्शाइए कि   एवं   के बीच बने त्रिभुज का क्षेत्रफल  x के परिमाण का आधा है।

Answer - 4 : -


Question - 5 : -
दर्शाइए कि  .( x  ) का परिमाण तीन सदिशों   ,  तथा  से बने समान्तर षट्फलक के आयतन के बराबर है।

Answer - 5 : -


अत: ज्यामितीय दृष्टिकोण से  •( x  ) उस समान्तर षट्फलक का आयतन है, जिसकी तीन संलग्न भुजाएँ सदिशों  ,  व  से निरूपित होती हैं।

Question - 6 : -
एक कण, जिसके स्थिति सदिश  के x, y, z – अक्षों के अनुदिश अवयव क्रमशः x,y,s हैं और रेखीय संवेग सदिश  के अवयव px, py, ps हैं, कोणीय संवेग  के अक्षों के अनुदिश अवयव ज्ञात कीजिए। दर्शाइए कि यदि कण केवल x-y तल में ही गतिमान हो तो। कोणीय संवेग का केवल z – अवयव ही होता है।

Answer - 6 : -


Question - 7 : - दो कण जिनमें से प्रत्येक का द्रव्यमान m एवं चाल υ है, d दूरी पर समान्तर रेखाओं के अनुदिश, विपरीत दिशाओं में चल रहे हैं। दर्शाइए कि इस द्विकण निकाय का सदिश कोणीय संवेग समान रहता है, चाहे हम जिस बिन्दु के परितः कोणीय संवेग लें।

Answer - 7 : -

माना दो कण समान्तर रेखाओं AB तथा CD के अनुदिश परस्पर विपरीत दिशाओं में चाल से गति कर रहे हैं।
माना किसी क्षण इनकी स्थितियाँ क्रमश: बिन्दु P तथा Q हैं। हम एक बिन्दु O के परितः इस निकाय का कोणीय संवेग ज्ञात करना चाहते हैं।
इस प्रकारं द्विकर्ण निकाय का बिन्दु O के परितः कोणीय संवेग केवल m, υ तथा रेखाओं के बीच की दूरी d पर निर्भर करता है अर्थात् यह कोणीय संवेग बिन्दु O की स्थिति पर निर्भर नहीं करता है।
अतः इस द्विकण निकाय का सभी बिन्दुओं के परितः कोणीय संवेग नियत है।

Question - 8 : - w भार की एक असंमांग छड़ को, उपेक्षणीय 3 भार वाली दो डोरियों से चित्र 7.4 में दर्शाए अनुसार लटकांकर विरामावस्था में रखा गया है। डोरियों द्वारा ऊध्र्वाधर से बने कोण क्रमशः 36.9° एवं 53.1° हैं। छड़ 2 m लम्बाई की है। छड़ के बाएँ सिरे से इसके गुरुत्व केन्द्र की दूरी d ज्ञात कीजिए।

Answer - 8 : - माना छड़ AB का गुरुत्व केन्द्र G, उसके एक सिरे A से ‘d दूरी पर स्थित है। छड़ तीन बलों के अधीन सन्तुलन में है।

डोरियों में तनाव T1 तथा T2 डोरियों के अनुदिश ऊपर 3 की ओर कार्य करते हैं।

छड़ का भार W उसके गुरुत्व केन्द्र G पर ऊर्ध्वाधरत: नीचे की ओर कार्य करता है।

सन्तुलन की स्थिति में तीनों बलों की क्रिया-रेखाएँ एक ही बिन्दु O पर काटती हैं।

Question - 9 : - एक कार का भार 1800 kg है। इसकी अगली और पिछली धुरियों के बीच की दूरी 1.8 m है। इसका गुरुत्व केन्द्र, अगली धुरी से 1.05 m पीछे है। समतल धरती द्वारा। इसके प्रत्येक अगले और पिछले पहियों पर लगने वाले बल की गणना कीजिए।

Answer - 9 : -

माना भूमि द्वारा प्रत्येक अगले पहिए पर आरोपित प्रतिक्रिया बल R1  प्रत्येक पिछले पहिए पर आरोपित प्रतिक्रियाबले R2 है तब निकाय के ऊर्ध्वाधर सन्तुलन के लिए,
2R1 + 2R2 = W ……(1)
जहाँ W कार का भार है जो उसके गुरुत्व केन्द्र G पर कार्यरत है।
G
के सापेक्ष आघूर्ण लेने पर
2R1 × 1.05 = 2R2 × (1.8 –1.05)
या
R1 × 1.05 = R2 × 0.75

Question - 10 : -
(a) किसी गोले को, इसके किसी व्यास के परितः जड़त्व – आघूर्ण 2MR2/5 है, जहाँ M गोले का द्रव्यमान एवं R इसकी त्रिज्या है। गोले पर खींची गई स्पर्श रेखा के परितः इसका जड़त्व-आघूर्ण ज्ञात कीजिए।
(b) M द्रव्यमान एवं R त्रिज्या वाली किसी डिस्क का इसके किसी व्यास के परित; “जड़त्व-आघूर्ण MR2 /4 है। डिस्क के लम्बवत् इसकी कोर से गुजरने वाली अक्ष के परितः
इस डिस्क (चकती) का जड़त्व-आघूर्ण ज्ञात कीजिए।

Answer - 10 : - (a) दिया है : गोले का द्रव्यमान = M, त्रिज्या = R
रेखा AB गोले की एक स्पर्श रेखा है जिसके परितः गोले का जड़त्व-आघूर्ण ज्ञात करना है। स्पर्श रेखा AB के समान्तर, गोले का एक व्यास PQ खींचा।
प्रश्नानुसार, व्यास PQ (जो कि गोले के केन्द्र से जाता है) के परितः गोले का जड़त्व-आघूर्ण।

Free - Previous Years Question Papers
Any questions? Ask us!
×