MENU

Chapter 3 Matrices Ex 3.3 Solutions

Question - 1 : -

Find the transpose ofeach of the following matrices:

Answer - 1 : -

(i)  (ii)  (iii) 


Solution

(i) 

(ii) 

(iii) 

Question - 2 : -

If and, then verify that

Answer - 2 : -

(i) 

(ii) 


Solution

We have:

(i)

(ii)

Question - 3 : -

If and, then verify that

Answer - 3 : -

(i) 

(ii) 

Solution

(i) It is known that

Therefore, we have:

(ii)

Question - 4 : -

If and, then find 

Answer - 4 : -

We know that

Question - 5 : -

For the matrices A and B,verify that (AB)′ =  where

Answer - 5 : -

(i) 

(ii) 

Solution

(i)

(ii)

Question - 6 : -

If (i) , then verify that 

Answer - 6 : -

(ii) , then verify that 

Solution

(i)

(ii)

Question - 7 : -

(i) Show that thematrix is a symmetric matrix

Answer - 7 : -

(ii) Show that thematrix is a skew symmetric matrix

Solution


(i) We have:

Hence, A isa symmetric matrix.

(ii) We have:

Hence, A isa skew-symmetric matrix.

Question - 8 : -

For the matrix, verify that

Answer - 8 : -

(i)  is a symmetric matrix

(ii)  is a skew symmetric matrix

Solution

(i) 

Hence,  is a symmetric matrix.

(ii) 

Hence, is a skew-symmetric matrix.

Question - 9 : -

Find and, when 

Answer - 9 : -

The given matrix is

Question - 10 : -

Express the followingmatrices as the sum of a symmetric and a skew symmetric matrix:

Answer - 10 : -

(i) 

(ii) 

(iii) 

(iv) 


Solution

(i)

Thus,  is a symmetric matrix.

Thus,  is a skew-symmetricmatrix.

Representing A asthe sum of P and Q:

(ii)

Thus,  is a symmetric matrix.

Thus, is a skew-symmetricmatrix.

Representing A asthe sum of P and Q:

(iii)

Thus, is a symmetric matrix.

Thus,  is a skew-symmetricmatrix..

Representing A asthe sum of P and Q:

(iv)

Thus,  is a symmetric matrix.

Thus,is a skew-symmetric matrix.

Representing A asthe sum of P and Q:

Free - Previous Years Question Papers
Any questions? Ask us!
×