Chapter 11 रचनाएँ (Constructions) Ex 11.1 Solutions
Question - 1 : - 7.6 सेमी. लम्बा एक रेखाखंड खींचिए और इसे 5 : 8 अनुपात में विभाजित कीजिए। दोनों भागों को मापिए।
Answer - 1 : - रचना के पद
I. एक रेखाखंड AB = 7.6 सेमी खींचो।
II. एक किरण AX खींचो जो AB के साथ एक न्यून कोण बनाए।
III. किरण AX पर (8 + 5) = 13 समान खंड काटो और उन्हें X1, X2,X3, X4, …, X13 से अंकित करो।
IV. X13 को B से मिलाओ।
V. X5 से X6C|| X13B खींचो जो AB को C पर मिले।
इस प्रकार बिन्दु C रेखाखंड AB को 5 : 8 अनुपात में विभाजित करता है।
दोनों रेखाखंडों को मापने पर, हमें प्राप्त होता है AC = 4.7 सेमी., BC = 2.9 सेमी
Question - 2 : - 4 सेमी., 5 सेमी. और 6 सेमी. भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर इसके समरूप एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की गुनी हों।
Answer - 2 : -
रचना के पद
I. एक ΔABC की रचना इस प्रकार करो कि BC = 6 सेमी, AC = 5 सेमी और AB = 4 समी है।
II. एक किरण BX इस प्रकार खींचो की ∠CBX एक न्यून कोण हो।
III. BX पर तीन बिन्दु X1, X2,और X3 इस प्रकार अंकित करो कि
BX1 = X1 X2 = X2 X3
IV. X3 और C को मिलाओ।
V. X2 से एक रेखा X3C के समान्तर खींचो जो BC को C पर काटे।
VI. C से एक रेखा CA के समान्तर खींचो जो BA को A’ पर मिले।
इस प्रकार अभिष्ठ त्रिभुज ABC’ है।
सत्यापनः रचना से हमें प्राप्त होता है किः
Question - 3 : - 5 सेमी.,6 सेमी. और 7 सेमी. भुजाओं वाले एक त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की गुनी हों।
Answer - 3 : - रचना के पद
I. एक त्रिभुज ABC की रचना इस प्रकार कीजिए जिसमें AB = 5 सेमी., BC = 7 सेमी. और AC = 6 सेमी. है।
II. एक किरण BX इस प्रकार खींचो की ∠CBX एक न्यून कोण हो।
III. BX पर 7 बिन्दु X1, X2,X3, X4, …, X7 अंकित करो।
IV. X5 और C को मिलाओ।
V. बिन्दु X7 से X5C || X7C’खींचो जो BC (बढ़ाने पर) को C पर काटे।
VI. C’ से CA के समान्तर एक रेखा खींचो जो BA (बढ़ाने पर) को A’ पर काटे।
इस प्रकार ΔABC अभीष्ठ त्रिभुज है।
सत्यापनः रचना से, हमें प्राप्त होता है कि
C’A’ || CA
AA’ समरूपता से हमें प्राप्त होता है:
ΔABC ~ ΔA’B’C’
Question - 4 : - आधार 8 सेमी. तथा ऊँचाई 4 सेमी. के एक समद्विबाहु त्रिभुज की रचना कीजिए और फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ इस समद्विबाहु त्रिभुज की संगत भुजाओं की 1 गुनी हों।
Answer - 4 : - रचना के पद
I. BC = 8 सेमी खींचो।
II. BC का लम्ब समद्विभाजक खींचो जो BC को D पर काटे।
III. उक्त लम्ब पर एक बिन्दु A इस प्रकार अंकित करो कि DA = 4 सेमी.
IV. AB और AC को मिलाओ। इस प्रकार ΔABC वांछित समद्विबाहु A है।
V. अब, एक किरण BX इस प्रकार खींचो कि ∠X एक न्यून कोण हो।
VI. BX पर तीन बिन्दु X1, X2,X3 इस प्रकार
अंकित करो किः
BX1 = X1X2 = X2X3
VII. X2 और C को मिलाओ।
VIII. X3 से एक रेखा B2C के समान्तर खींचो जो BC (बढ़ाने पर) को C पर काटे।
IX. C’ से एक रेखा CA के समान्तर खींचो जो BA (बढ़ाने पर) को A’ पर काटे।
इस प्रकार ΔA’B’C’ अभीष्ठ त्रिभुज है।
Question - 5 : - एक त्रिभुज ABC बनाइए जिसमें BC = 6 सेमी, AB = 5 सेमी. और ∠ABC = 60° हो। फिर एक त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की गुनी हों।
Answer - 5 : -
रचना के पद
I. एक त्रिभुज ABC की रचना इस प्रकार करो किः BC = 6 सेमी, AB = 5 सेमी और ∠ABC = 60°.
II. एक किरण BX इस प्रकार खींचो कि ∠CBX एक न्यनू कोण हो।
III. BX पर चार बिन्दु X1, X2,X3 और X4 इस प्रकार अंकित करो कि BX1 = X1X2 =X2X3 = X3X4
IV. X4C को मिलाओ।
V. X3C’ || X4C खींचो जो कि BC को C’ पर काटे।
VI. एक अन्य रेखा C’ से CA के समान्तर खींचो जो BA को A’ पर काटे।
Question - 6 : - एक त्रिभुज ABC बनाइए जिसमें BC = 7 सेमी, ∠B = 45°, ∠A = 105° हो। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ ΔABC की संगत भुजाओं की गुनी हों।
Answer - 6 : - रचना के पद
I. एक ΔABC की रचना इस प्रकार करो कि BC = 7 सेमी, ∠B = 45° और ∠A = 105° हो।
II. एक किरण BX इस प्रकार खींचो कि ∠CBX एक न्यून कोण हो।
III. BX पर चार बिन्दु X1, X2,X3 और X4 इस प्रकार अंकित करो किः
BX1 = X1X2 = X2X3 =X3X4 हो।
IV. X3 और C को मिलाओ।
V. X4C’ || X3C इस प्रकार खींचो कि C’, BC (बढ़ाने पर) को मिले।
VI. C’ से CA के समान्तर एक रेखा खींचो जो BA (बढ़ाने पर) को A’ पर मिले।
इस प्रकार ΔABC अभीष्ठ त्रिभुज है।
सत्यापन: रचना से हमें प्राप्त है किः
Question - 7 : - एक समकोण त्रिभुज की रचना कीजिए, जिसकी भुजाएँ (कर्ण के अतिरिक्त) 4 सेमी. तथा 3 सेमी. लम्बाई की हों। फिर एक अन्य त्रिभुज की रचना कीजिए, जिसकी भुजाएँ दिए हुए त्रिभुज की संगत भुजाओं की गुनी हों।
Answer - 7 : - रचना के पद
I. एक ΔABC की रचना इस प्रकार करो कि ∠B = 90°, BC = 4 सेमी और BA = 3 सेमी हो।
II. एक किरण BX इस प्रकार खींचो कि ∠CBX एक न्यनू कोण हो।
III. BX पर पाँच बिन्दु X1, X2,X3, X4 और X5
इस प्रकार खींचो कि: BX1 = X1X2 =X2X3 = X3X4 = X4X5 हो।
IV. X3 और C को मिलाओ।
V. X5 से X3Cके समान्तर एक रेखा खींचो जो BC को बढ़ाने पर C’ पर काटे।
VI. एक अन्य रेखा C’ से CA के समान्तर खींचो जो BA को बढ़ाने पर A’ पर मिले।।
इस प्रकार ΔA’B’C’ अभीष्ठ त्रिभुज है।