MENU
Question -

Consider f: R+ → [−5, ∞) given by f(x) =9x2 + 6x − 5. Show that f is invertible with

f-1(x) = (√(x +6)-1)/3 



Answer -

Given f: R+ →[−5, ∞) given by f(x) = 9x2 + 6x – 5

We have to show that fis invertible.

Injectivity of f:

Let x and y be two elements of domain (R+),

Such that f(x) = f(y)

 9x+6x – 5 = 9y+ 6y − 5

 9x+6x = 9y+ 6y

x = y (As, x, y R+)

So, f isone-one.

Surjectivityof f:

Let y is in the co domain (Q)

Such that f(x) =y

9x2 +6x – 5 = y

9x2 +6x = y + 5

9x2 +6x +1 = y + 6 (By adding 1 on both sides)

(3x + 1)2 =y + 6

3x + 1 = √(y + 6)

3x = √ (y + 6) – 1

x = (√ (y + 6)-1)/3in R+ (domain)

f is onto.

So, f is a bijection and hence, it is invertible.

Now we have to find f-1

Let f−1(x) = y…..(1)

 x = f (y)

 x = 9y+ 6y − 5

 x + 5 = 9y+6y

 x + 6= 9y2+ 6y + 1        (adding 1 on both sides)

 x + 6 = (3y + 1)2

3y + 1 = √ (x + 6)

 3y =√(x +6) -1

y = (√ (x+6)-1)/3

Now substituting this valuein (1) we get,

So, f-1(x) =(√ (x+6)-1)/3 

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×