The Total solution for NCERT class 6-12
Answer - 1 : -
We know that a3 + b3 = (a + b)(a2 – ab + b2)a3 – b3 = (a – b) (a2 + aft + b2)p3 + 21 = (p)3 + (3)3= (p + 3) (p2– p x 3 + 32)= (p + 3) (p2 – 3p + 9)
Answer - 2 : -
y3 + 125 = (p)3 + (5)3= (p + 5) (p2 – 5y + 52)= (P + 5) (p2 – 5y + 25)
Answer - 3 : -
1 – 21a3 = (1)3 – (3a)3= (1 – 3a) [12 + 1 x 3a + (3a)2]= (1 – 3a) (1 + 3a + 9a2)
Answer - 4 : -
8x3y3 + 27a3= (2xy + 3a) [(2xy)2 – 2xy x 3a + (3a)2]= (2xy + 3a) (4x2y – 6xya + 9a2)
Answer - 5 : -
64a3 – b3 = (4a)3 –(b)3= (4a – b) [(4a)2 + 4a x b + (b)2]= (4a – b) (16a2 + 4ab + b2)
Answer - 6 : -
Answer - 7 : -
I0x4y- 10xy4 = 10xy(x3 -y3)= 10xy(x –y) (x2 + xy + y2)
Answer - 8 : -
54 x6y +2x3y4 = 2x3y(27x3 +y3)= 2x3y[(3x)3 +(y)3]= 2x3y(3x +y) [(3x)2 -3xx y + y2]= 2x3y(3x + y) (9x2 -3xy+ y2)
Answer - 9 : -
32a3 + 108b3= 4(8a3 + 27b3) = 4 [(2a)3 +(3 b)3]= 4(2a + 3b) [(2a)2 – 2a x 3b + (3b)2]= 4(2a + 3b) (4a2 – 6ab + 9b2)
Answer - 10 : -
(a – 2b)3 – 512b3= (a – 2b)3 – (8b)3= (a – 2b- 8b) [(a – 2b)2 + (a – 2b) x 8b + (8b)2]= (a – 10b) [a2 + 4b2 – 4ab + 8ab – 16b2 +64b2]= (a – 10b) (a2 + 4ab + 52b2)