Chapter 1 सम्बन्ध एवं फलन (Relations and Functions) Ex 1.4 Solutions
Question - 1 : - मान लीजिए कि समुच्चय { 1,2,3,4,5 } में एक द्विआधारी संक्रिया *’, a *’ b = a तथा b का HCF द्वारा परिभाषित है। क्या संक्रिया *’ उपर्युक्त प्रश्न 4 में परिभाषित संक्रिया * के समान है? अपने उत्तर का औचित्य भी बतलाइए।
Answer - 1 : -
प्रश्नानुसार, समुच्चय {1, 2, 3, 4, 5} संक्रिया a *’ b H.C.F. a तथा b द्वारा परिभाषित है। द्विआधारी संक्रिया * के लिए सारणी निम्नलिखित होगी ।
*’ | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 1 | 2 | 1 |
3 | 1 | 1 | 3 | 1 | 1 |
4 | 1 | 2 | 1 | 4 | 1 |
5 | 1 | 1 | 1 | 1 | 5 |
यह संक्रिया सारणी प्रश्न 4 में दी गई संक्रिया सारणी के समान है।
अतः
द्विआधारी संक्रिया *’ तथा * समान होगी।
Question - 2 : - मान लीजिए कि N में एक द्विआधारी संक्रिया *, a* b = a तथा b का L.C.M. द्वारा परिभाषित है। निम्नलिखित ज्ञात कीजिए।
(i) 5 * 7, 20 * 16
(ii) क्या संक्रिया * क्रमविनिमेय है?
(iii) क्या * साहचर्य है?
(iv) N में * का तत्समक अवयव ज्ञात कीजिए।
(v) N के कौन-से अवयव * संक्रिया के लिए व्युत्क्रमणीय हैं?
Answer - 2 : -
प्रश्न में समुच्चय N = प्राकृत संख्याओं का समुच्चय में * संक्रिया, a * b = a, b का L.C.M. द्वारा परिभाषित है।
(i)
5 * 7 = 5 व 7 का L.C.M. = 35
20 * 16 = 20 वे 16 का L.C.M. = 80
∴ 5 * 7 = 35 , 20 *16 =80
(ii)
a*b = a, b का L.C.M.
b* a = b, a का L.C.M.
∵ a * b तथा b* a का L.C.M. बराबर है।
इसलिए
⇒ a * b = b * a
∵ स्पष्ट है कि संक्रिया * क्रमविनिमेय द्विआधारी संक्रिया है।
(iii)
a * (b * c) = a * (b, c का L.C.M.)
= a, b, c का L.C.M.
(a*b)* c = (a, b का L.C.M.) *C
= a, b, c का L.C.M.
∵ a* (b * c) तथा (a * b)* c के L.C.M. बराबर हैं।
⇒ (a * b)* c = a * (b* c)
∴ स्पष्ट है कि संक्रिया * साहचर्य द्विआधारी संक्रिया है।
(iv)
* संक्रिया का तत्समक अवयव 1 है।
1 * a = a * 1 = a
(v)
N * N → N, * संक्रिया का a * b = a, b का L.C.M. द्वारा परिभाषित किया गया है। यदि a = 1, b = 1, a * b = 1 अन्यथा नहीं
⇒ 1 * 1 =1
⇒ 1 के लिए व्युत्क्रमणीय है।
Question - 3 : - प्रश्न 9 में दी गई संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
Answer - 3 : -
(i)
दिया है, a * b = a – b यदि e तत्समक अवयव हो तब ।
a * e = a – e तथा e * a = e – a
a – e ≠ e – a ⇒ a * e ≠ e * a
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।
(ii)
दिया है, a * b = a2 +b2
∴ a * e = a2 +e2 तथा e * a = e2+a2
∵ हम देखते हैं कि
a *e = e * a ≠ 1
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।
(iii)
दिया है, a * b = a+ ab
a* e = a + ae तथा
∵ हम देखते हैं कि a * e ≠ e * a ≠ a
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।
(iv)
दिया है, a* b = (a – b)2
a * e = (a – e)2 ≠ a तथा e * a = (e – a)2 ≠a
a * e =e * a ≠ a
अत :
स्पष्ट है कि e का अस्तित्व नहीं है।
अतः
स्पष्ट है कि e का अस्तित्व नहीं है।
Question - 4 : - बताइए कि क्या निम्नलिखित कथन सत्य हैं या असत्य हैं। औचित्य भी बतलाइए।
(i) समुच्चय N में किसी भी स्वेच्छ द्विआधारी संक्रिया * के लिए a * a = a, ∀ a ∈ N
(ii) यदि N में * किसी क्रमविनिमेय द्विआधारी संक्रिया है तो a* (b * c) = (c * b) * a
Answer - 4 : -
प्रश्नानुसार, द्विआधारी संक्रिया समुच्चय N पर इस प्रकार परिभाषित की गयी है कि a * a = a, ∀ a ∈ N
(i)
यहाँ पर * संक्रिया में केवल एक ही अवयव का प्रयोग किया गया है।
अत :
स्पष्ट है कि यह कथन असत्य है।
(ii)
वास्तविक संख्याओं में समुच्चय पर संक्रिया * क्रमविनिमेय है।
b * c = c * b
∴ तथा (c * b) * a = (b * c) * a = a * (b * c)
∴ a* (b * c) = (c * b) * a
∴ यह कथन सत्य है।
Question - 5 : - a * b= a3 + b3 प्रकार से परिभाषित N में एक द्विआधारी संक्रिया * पर विचार कीजिए। अब निम्नलिखित में से सही उत्तर का चयन कीजिए
(A) * साहचर्य तथा क्रमविनिमेय दोनों है।
(B) * क्रमविनिमेय है किन्तु साहचर्य नहीं है।
(C) * साहचर्य है किन्तु क्रमविनिमेय नहीं है।
(D) * न तो क्रमविनिमेय है और न साहचर्य है।
Answer - 5 : - प्रश्नानुसार, द्विआधारी संक्रिया * को समुच्चय N पर इस प्रकार परिभाषित किया गया है कि
a * b= a3 + b3