MENU

Chapter 10 वृत्त (Circles ) Ex 10.4 Solutions

Question - 1 : - 5 सेमी और 3 सेमी त्रिज्या वाले दो वृत्त दो बिन्दुओं पर प्रतिच्छेद करते हैं तथा उनके केन्द्रों के बीच की दूरी 4 सेमी है। उभयनिष्ठ जीवा की लम्बाई ज्ञात कीजिए।

Answer - 1 : -

दिया है: O तथा O’ केन्द्रों वाले वृत्तों की त्रिज्याएँ OA तथा O’A क्रमशः 5 सेमी 3 सेमी हैं।
उनके केन्द्रों के बीच की दूरी OO’ = 4 सेमी है।


ज्ञात करनी है : उभयनिष्ठ जीवा AB की माप। गणना
∆OAO’
की भुजाएँ O’A = 3 सेमी,
OO’ = 4
सेमी OA = 5 सेमी हैं।
तब, OA² = (25) और O’A² +(OO’)² = (3)² +(4)² = 25
OA² = O’A² + OO’² (
पाइथागोरस प्रमेय से)
अतः ∆OAO’ समकोणीय है।
AOO’ = 90°
परन्तु APB उभयनिष्ठ जीवा है जो OO” पर लम्ब होना चाहिए।
अतः P और O’ एक ही बिन्दु है अर्थात्
त्रिज्या AO’ = उभयनिष्ठ जीवा का भाग AP
उभयनिष्ठ जीवा का भाग AP = AO’ = 3 सेमी
केन्द्र रेखा OO’ उभयनिष्ठ जीवा AB की लम्ब-समद्विभाजक होगी।
AB = 2 x AP = 2 x 3 = 6
सेमी
अत: उभयनिष्ठ जीवा की लम्बाई = 6 सेमी।

Question - 2 : - यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें, तो सिद्ध कीजिए कि एक जीवा के खण्ड दूसरी जीवा के संगत खण्डों के बराबर हैं।

Answer - 2 : -

दिया है : O केन्द्र वाले एक वृत्त की AB CD दो बराबर जीवाएँ हैं जो एक-दूसरे को वृत्त के अन्दर बिन्दु P पर काटती हैं।
सिद्ध करना है : AP = CP तथा BP = DP
रचना : वृत्त के केन्द्र O से जीवा AB पर OM तथा जीवा CD पर ON लम्बे खींचे।। रेखाखण्ड OP खींचा।


उपपत्ति : OM AB OMP = 90°
और ON CD ONP = 90°
∆OMP
और ∆ONP समकोणीय हैं।
तब, समकोण ∆OMP तथा ∆ONP में,
OM = ON (
जीवा AB = जीवा CD)
OP = OP (
उभयनिष्ठ जीवा है।)
OMP = ONP (प्रत्येक 90°)
∆OMP = ∆ONP (R.H.S.
से)
MP = NP (C.P.C.T.) …(1)
OM
AB
AM = BM
AP + PM = BM
AP = BM – PM
AP = 
AB – PM ( AM = BM = ) …..(2)

और ON CD
CN = DN
CP + PN = DN
CP = DN – PN
CP = 
CD – PN(CN = DN = )

CP = AB – PM[CD = AB तथा समीकरण (1) से PN = PM] …(3)

अब समीकरण (2) (3) से,
AP = CP
AB = CD (
दिया है।)
AP + BP = CP + DP (
चित्र से) परन्तु
AP = CP (
ऊपर सिद्ध किया है।)
घटाने पर BP = DP
अत: AP = CP और BP = DP
अर्थात एक जीवा AB के खण्ड दूसरी जीवा CD के संगत खण्डों के बराबर हैं।
Proved.

Question - 3 : - यदि एक वृत्त की दो समान जीवाएँ वृत्त के अन्दर प्रतिच्छेद करें तो सिद्ध कीजिए कि प्रतिच्छेद बिन्दु को केन्द्र से मिलाने वाली रेखा जीवाओं से बराबर कोण बनाती है।

Answer - 3 : -

दिया है : केन्द्र O के वृत्त की दो बराबर जीवाएँ AB और CD जो बिन्दु P पर प्रतिच्छेदन करती हैं।
सिद्ध करना है: रेखाखण्ड OP, से जीवाओं AB व CD द्वारा बने ∠BPO = ∠DPO
रचना : केन्द्र O से AB और CD पर क्रमशः OM और ON लम्ब डाले।
उपपत्ति : जीवा AB = जीवा CD
OM = ON
अब ΔOPM और ΔOPN में,
OM = ON (दिया है।)
∠OMP = ∠ONP (प्रत्येक समकोण है।)
OP = OP (उभयनिष्ठ भुजा है।)
ΔOPM = ΔOPN (R.H.S. से)
अतः ∠MPO = NPO यो ∠BPO = ∠DPO (C.P.C.T.)
Proved.

Question - 4 : - यदि एक रेखा दो संकेन्द्रीय वृत्तों (एक ही केन्द्र वाले वृत्त) को, जिनका केन्द्र O है, A, B, C और D पर प्रतिच्छेद करे, तो सिद्ध कीजिए AB = CD है।

Answer - 4 : -

दिया है : दो संकेन्द्रीय वृत्तों का केन्द्र 0 है। एक ऋजु रेखा वृत्तों को बिन्दुओं A, B, C और D पर प्रतिच्छेदित करती है।
सिद्ध करना है : AB = CD
रचना : वृत्त के केन्द्र O से हैं पर OM लम्ब डाला।
उपपत्ति : रेखा l बड़े वृत्त को बिन्दुओं A तथा D पर काटती है।
AB वृत्त की जीवा है और OM उस पर केन्द्र से डाला गया लम्ब है।
AM = MD ……..(1)
रेखा l छोटे वृत्त को बिन्दुओं B तथा C पर काटती है।
BC वृत्त की जीवा है और OM उस पर केन्द्र से खींचा गया लम्ब है।
BM = MC ……..(2)
समीकरण (1) में से (2) को घटाने पर,
AM – BM = MD – MC
अतः AB = CD
Proved.

Question - 5 : - एक पार्क में बने 5 मीटर त्रिज्या वाले वृत्त पर खड़ी तीन लड़कियाँ रेशमा, सलमा एवं मनदीप खेल रही हैं। रेशमा एक गेंद को सलमा के पास, सलमा मनदीप के पास तथा मनदीप रेशमा के पास फेंकती है। यदि रेशमा तथा सलमा के बीच और सलमा तथा मनदीप के बीच की प्रत्येक दूरी 6 मीटर हो तो रेशमा और मनदीप के बीच की दूरी क्या है?

Answer - 5 : -

दिया है। एक पार्क में 5 मीटर त्रिज्या का एक वृत्त बना है जिसका केन्द्र O है। तीन लड़कियाँ रेशमा, सलमी और मनदीप वृत्त पर क्रमशः A, B व C स्थानों पर खड़ी हैं। रेशमा और सलमा के बीच की दूरी AB = 6 मीटर तथा सलमा और मनदीप के बीच दूरी BC = 6 मीटर है।
ज्ञात करना है : रेशमा और मनदीप के बीच की दूरी = AC
गणना : त्रिज्याएँ OA और OB खींचीं और माना कि OB, AC को बिन्दु P पर काटती है।
ΔOAB में, OA = 5 मीटर (त्रिज्या), OB = 5मीटर (त्रिज्या) तथा AB = 6 मीटर।
माना OA = 5 मीटर = a, OB = 5 मीटर = b और AB = 6 मीटर = c अर्धपरिमाप

Question - 6 : - 20 मीटर त्रिज्या का एक गोल पार्क (वृत्ताकार) एक कॉलोनी में स्थित है। तीन लड़के अंकुर, सैय्यद तथा डेविड इसकी परिसीमा पर बराबर दूरी पर बैठे हैं और प्रत्येक के हाथ में एक खिलौना टेलीफोन आपस में बात करने के लिए है। प्रत्येक फोन की डोरी की लम्बाई ज्ञात कीजिए।

Answer - 6 : -

दिया है : O केन्द्र वाला एक वृत्त के आकार का पार्क है जिसकी त्रिज्या OA या OB = 20 मीटर है। वृत्त की परिधि पर तीन लड़के एक-दूसरे से बराबर दूरी पर A, B व C स्थानों पर ऐसे बैठे हैं कि
AB = BC = AC

Free - Previous Years Question Papers
Any questions? Ask us!
×