MENU

RD Chapter 4 Inverse Trigonometric Functions Ex 4.10 Solutions

Question - 1 : -

Evaluate:

(i) Cot (sin-1 (3/4) + sec-1 (4/3))

(ii) Sin (tan-1 x + tan-1 1/x) for x <0

(iii) Sin (tan-1 x + tan-1 1/x) for x> 0

(iv) Cot (tan-1 a + cot-1 a)

(v) Cos (sec-1 x + cosec-1 x), |x| ≥ 1

Answer - 1 : -

(i) Given Cot (sin-1 (3/4)+ sec-1 (4/3))

(ii) Given Sin (tan-1 x+ tan-1 1/x) for x < 0

(iii) Given Sin (tan-1 x+ tan-1 1/x) for x > 0

(iv) Given Cot (tan-1 a+ cot-1 a)

(v) Given Cos (sec-1 x+ cosec-1 x), |x| ≥ 1

= 0

Question - 2 : -

If cos-1 x + cos-1 y = π/4, find thevalue of sin-1 x + sin-1 y.

Answer - 2 : -

Given cos-1 x+ cos-1 y = π/4

Question - 3 : - If sin-1 x + sin-1 y= π/3 and cos-1 x – cos-1 y = π/6, find thevalues of x and y.

Answer - 3 : -

Given sin-1 x+ sin-1 y = π/3 ……. Equation (i)

And cos-1 x– cos-1 y = π/6 ……… Equation (ii)

Question - 4 : -

If cot (cos-1 3/5 + sin-1 x) = 0, findthe value of x.

Answer - 4 : -

Given cot (cos-1 3/5+ sin-1 x) = 0

On rearranging we get,

(cos-1 3/5+ sin-1 x) = cot-1 (0)

(Cos-1 3/5+ sin-1 x) = π/2

We know that cos-1 x+ sin-1 x = π/2

Then sin-1 x= π/2 – cos-1 x

Substituting the abovein (cos-1 3/5 + sin-1 x) = π/2 we get,

(Cos-1 3/5+ π/2 – cos-1 x) = π/2

Now on rearranging weget,

(Cos-1 3/5– cos-1 x) = π/2 – π/2

(Cos-1 3/5– cos-1 x) = 0

Therefore Cos-1 3/5= cos-1 x

On comparing the aboveequation we get,

x = 3/5

Question - 5 : - If (sin-1 x)2 +(cos-1 x)2 = 17 π2/36, find x.

Answer - 5 : -

Given (sin-1 x)2 +(cos-1 x)2 = 17 π2/36

We know that cos-1 x+ sin-1 x = π/2

Then cos-1 x= π/2 – sin-1 x

Substituting this in (sin-1 x)2 +(cos-1 x)2 = 17 π2/36 we get

(sin-1 x)2 +(π/2 – sin-1 x)2 = 17 π2/36

Let y = sin-1 x

y2 +((π/2) – y)2 = 17 π2/36

y2 + π2/4– y2 – 2y ((π/2) – y) = 17 π2/36

π2/4 – πy +2 y= 17 π2/36

On rearranging andsimplifying, we get

2y2 –πy + 2/9 π2 = 0

18y2 –9 πy + 2 π2 = 0

18y2 –12 πy + 3 πy + 2 π2 = 0

6y (3y – 2π) + π (3y –2π) = 0

Now, (3y – 2π) = 0 and(6y + π) = 0

Therefore y = 2π/3 andy = – π/6

Now substituting y = –π/6 in y = sin-1 x we get

sin-1 x= – π/6

x = sin (- π/6)

x = -1/2

Now substituting y =-2π/3 in y = sin-1 x we get

x = sin (2π/3)

x = √3/2

Now substituting x =√3/2 in (sin-1 x)2 + (cos-1 x)2 =17 π2/36 we get,

= π/3 + π/6

= π/2 which is notequal to 17 π2/36

So we have to neglectthis root.

Now substituting x =-1/2 in (sin-1 x)2 + (cos-1 x)2 =17 π2/36 we get,

= π2/36 + 4π2/9

= 17 π2/36

Hence x = -1/2.

Question - 6 : -

Solve:

Answer - 6 : -

sin-1(1/5)+ [ Π/2 - sin-1x ] = sin-11

 

sin-1(1/5)+ Π/2 - sin-1x = Π/2

 

sin-1(1/5)- sin-1x = 0

 

x = 1/5

Question - 7 : -

Solve:

Answer - 7 : -

Π/2 - cos-1x= Π/6 + cos-1x

 

Π/3 = 2cos-1x

 

cos-1x= Π/6

 

x = √3/2

Question - 8 : -

Solve:

 

4 sin-1x = Π - cos-1x

Answer - 8 : -

4sin-1x+cos-1x=Π

3sin-1x+sin-1x+cos-1x=Π

3sin-1x=Π/2 [sin-1x+cos-1x=Π/2]

sin-1x=Π/6

x = sinΠ/6=0.5

Question - 9 : -

Solve:

Answer - 9 : -

tan-1x+cot-1x=Π/2so the above equation reduces to

cot-1x=2Π/3-Π/2 =Π/6

x= cotΠ/6 =√3

Question - 10 : -

Solve:

5 tan-1x + 3 cot-1x = 2Π

Answer - 10 : -

 2tan-1x+3(Π/2)=2Π

2tan-1x=2Π-3Π/2=Π/3

tan-1x=Π/6

x=tanΠ/6=1/√3

Free - Previous Years Question Papers
Any questions? Ask us!
×