MENU

Chapter 10 s ब्लॉक तत्त्व (The s block Elements) Solutions

Question - 1 : - क्षार धातुओं के सामान्य भौतिक तथा रासायनिक गुण क्या हैं?

Answer - 1 : -

वर्ग 1 के तत्व: क्षार धातुएँ (Elements of Group 1:Alkali Metals) क्षार धातुओं के भौतिक तथा रासायनिक गुणों में परमाणु क्रमांक के साथ एक नियमित प्रवृत्ति पाई जाती है। इन तत्वों के भौतिक तथा रासायनिक गुणों की व्याख्या निम्नलिखित है-
भौतिक गुण (Physical Properties)
क्षार धातु-परिवार के सदस्यों के महत्त्वपूर्ण भौतिक गुण निम्नलिखित सारणी में सूचीबद्ध हैं।
सारणी-1: क्षार धातुओं के भौतिक गुण (Physical Properties of the Alkali Metals)

1. परमाणु त्रिज्या (Atomic radi)–क्षार धातुओं की परमाणु त्रिज्या ( धात्विक त्रिज्या) का मान अपने आवर्ती में सबसे अधिक होता है तथा ये मान वर्ग में नीचे जाने पर बढ़ते जाते हैं।
किसी परमाणु के नाभिक के केन्द्र से संयोजकता कोश में उपस्थित बाह्यतम इलेक्ट्रॉन के बीच की दूरी परमाणु त्रिज्या कहलाती है। क्षार धातुएँ, आवर्त का प्रथम तत्व होते हुए, सर्वाधिक परमाणु त्रिज्या रखती हैं, चूंकि इनके संयोजकता कोश में केवल एक इलेक्ट्रॉन होता है। परिणामस्वरूप नाभिक के साथ आकर्षण बल का परिमाण न्यूनतम होता है। वर्ग में नीचे जाने पर इलेक्ट्रॉन क्रोशों की क्ररि वृद्धि के कारण परमाणु त्रिज्या बढ़ती है। इसके अतिरिक्त वर प्रभाव का परिमाण भी बढ़ता है जो परमाणु के नाभिक के साथ संयोजी -इलेक्ट्रॉनों के आकर्षण को कम कर देता है, इसकेनाभिकीय आवेश भी बढ़ता है जो नाभिक तथा इलेक्ट्रॉनों के मध्य आकर्षण को बढ़ा देता है। परन्तु इसका परिमाण आवरण प्रभाव की तुलना में अत्यन्त कम होता है। इस प्रकार परमाणु आकार पर कुल परिमाण द्वारा यह प्रेक्षित होता है कि वर्ग में नीचे जाने पर तत्वों के परमाणु आकार बढ़ते हैं।

2. आयनिक त्रिज्या (Ionic radii)-क्षार धातु परमाणु संयोजी s (ns’)-इलेक्ट्रॉन खोकर एकलसंयोजी धनायन बनाते हैं। ये धनायनी त्रिज्या मूल परमाणु की तुलना में छोटी होती हैं। सारणी-3 के अनुसार आयनिक त्रिज्या के मान वर्ग में नीचे जाने पर बढ़ते हैं। चूंकि एकल संयोजी धनायनों का निर्माण परमाणु के संयोजकता कोश में उपस्थित केवल एक इलेक्ट्रॉन के निष्कासन पर होता है; अतः शेष इलेक्ट्रॉन परमाणु के नाभिक द्वारा अधिक आकर्षित होकर उसके समीप हो जाते हैं। परिणामस्वरूप धनायनों का आकार कम हो जाता है। जैसा कि आयनों का आकार अपने मूल परमाणुओं से सम्बद्ध होता है; इसलिए आयनिक त्रिज्या भी परमाणु त्रिज्या के समान वर्ग में नीचे जाने पर बढ़ती है।

3. आयनन एन्थैल्पी (lonisation enthalpies)-गैसीय अवस्था में किसी उदासीन विलगित परमाणु से सर्वाधिक शिथिल बद्ध (loosely bound) इलेक्ट्रॉन हटाने के लिए आवश्यक ऊर्जा को न्यूनतम मात्रा, आयनन एन्थैल्पी कहलाती है। इसे kJ mol-1 या ev इकाइयों में व्यक्त किया जा सकता है।

1eV= 96.472 kJ mol-1

क्षार धातुओं की आयनन एन्थैल्पी अपने आवर्ती में न्यूनतम होती है तथा वर्ग में नीचे जाने पर यह घटती है। इन तत्वों के प्रथम आयनन ऊर्जा के मान सारणी-1 में दिए गए हैं
क्षार धातुओं की आयनन एन्थैल्पी के मान कम होने का कारण इनका परमाणु आकार अधिक होना है। जिसके कारण संयोजी -इलेक्ट्रॉन (ns’) को सरलता से निकाला जा सकता है। आयनन एन्थैल्पी के मान वर्ग में नीचे जाने पर भी घटते हैं; क्योंकि परमाणु त्रिज्या के बढ़ने तथा आवर! प्रभाव को परिमाण अधिक होने पर नाभिक के आकर्षण बल का परिमाण घट जाता है। इसके अतिरिक्त एक ही तत्व के लिए प्रथम तथा द्वितीय आयनन एन्थैल्पी के मानों में बहुत अधिक अन्तर होता है।

उदाहरणार्थ-सोडियम के लिए प्रथम आयनन एन्थैल्पी का मान 496 kJ mol-1 है, जबकि इसकी द्वितीय आयनन एन्थैल्पी का मान 4562 kJmol-1 है। इसका प्रमुख कारण है कि एक इलेक्ट्रॉन खोकर बनने वाला एकल संयोजी धनायन (M+) उच्च सममिताकार तथा समीपवर्ती उत्कृष्ट गैस की स्थायी संरचना को प्राप्त कर लेता है। परिणामस्वरूप दूसरे इलेक्ट्रॉन का निष्कासन अत्यन्त कठिन प्रक्रिया हो जाती है जैसा कि उपर्युक्त उदाहरण में दिए सोडियम के प्रथम तथा द्वितीय आयनन एन्थैल्पी के मानों से स्पष्ट हो जाता है।

4. विद्युत ऋणात्मकता (Electronegativity)–किसी तत्व की विद्युत ऋणात्मकता इसके परमाणु की इलेक्ट्रॉनों (बन्ध के साझे युग्म के लिए) को अपनी ओर आकर्षित करने की क्षमता को कहते हैं। क्षार धातुओं की विद्युत ऋणात्मकता कम होती है जिसका अर्थ है कि इनकी इलेक्ट्रॉन आकर्षित करने की क्षमता कम होती है। विद्युत ऋणात्मकता के मान वर्ग में नीचे जाने पर घटते हैं।
क्षार धातु परमाणुओं का ns1 इलेक्ट्रॉनिक विन्यास होता है जिसका अर्थ है कि इनको प्रवृत्ति इलेक्ट्रॉन त्यागने की होती है कि ग्रहण करने की। अतः इनकी विद्युत ऋणात्मकता के मान कम होते हैं। चूंकि वर्ग में नीचे जाने पर परमाणु आकार बढ़ते हैं; अतः परमाणु की संयोजी इलेक्ट्रॉन को थामे रखने की क्षमता में क्रमिक कमी आती है। इसलिए वर्ग में नीचे जाने पर विद्युत ऋणात्मकता घटती है।

5. ऑक्सीकरण-अवस्था एवं धन विद्युती गुण (Oxidation states and electropositive characters)–क्षार धातु परिवार के सभी सदस्य अपने यौगिकों में +1 ऑक्सीकरण अवस्था प्रदर्शित करते हैं तथा प्रबल धन विद्युती होते हैं। वर्ग में ऊपर से नीचे जाने पर धन विद्युती गुण बढ़ता है। क्षार धातुओ की आयनन एन्थेपी के भान बहुत कम होने के कारण इनके परमाणुओं में संयोजी इलेक्ट्रॉन खोकर एकल संयोजी धनायन बनाने की प्रवृत्ति बहुत अधिक होती है। परिमाणस्वरूप एन्थैल्पी का मान घटता है; अत: धन विद्युती गुण बढ़ता है।

6. धात्विक लक्षण (Metallic character)- वर्ग 1 के तत्व प्रारूपिक धातुएँ हैं तथा अत्यन्त कोमल हैं। इन्हें चाकू द्वारा सरलता से काटा जा सकता है। वर्ग में ऊपर से नीचे जाने पर इनके धात्विक लक्षणों में अत्यधिक वृद्धि होती है।
किसी तत्व का धात्विक गुण उसके इलेक्ट्रॉन त्यागकर धनायन बनाने की प्रवृत्ति से सम्बन्धित होता है। धात्विक बन्ध की प्रबलता इलेक्ट्रॉन समुद्र (electron sea) में उपस्थित संयोजी इलेक्ट्रॉनों तथा करनेल (kernal) के मध्य आकर्षण बल पर निर्भर करती है। करनेल का आकार जितना छोटा होगा तथा संयोजी इलेक्ट्रॉनों की संख्या जितनी अधिक होगी, धात्विक बन्ध उतना ही प्रबल होगा। दूसरे शब्दों में, धातु की कठोरता धात्विक बन्ध के प्रबल होने पर अधिक होगी। क्षार धातुओं में करनेल बड़े आकार के होते हैं तथा इनमें केवल एक संयोजी इलेक्ट्रॉन होता है। अतः क्षार धातुओं में धात्विक बन्ध दुर्बल होते हैं तथा क्षार धातुएँ कोमल होती हैं। लीथियम सबसे कठोर होता है, चूंकि इसका करनेल सबसे छोटे आकार का होता है।

7. गलनांक तथा क्वथनांक (Melting and boiling points)-क्षार धातुओं के गलनांक तथा क्वथनांक अत्यन्त कम होते हैं जो वर्ग में ऊपर से नीचे जाने पर घटते हैं।
क्षार धातुओं के परमाणुओं को आकारअधिक होता है; अतः क्रिस्टल-जालक में इनकी बन्धन ऊर्जा बहुत कम होतो है। परिणामस्वरूप इनके गलनांक कम होते हैं। वर्ग में नीचे जाने पर परमाणु आकार में वृद्धि के साथ-साथ गलनांक के मान घटते हैं। क्वथनांक कम होने का कारण भी यही होता है।

8. घनत्व (Density)-क्षार धातुएँ अत्यन्त हल्की होती हैं। इस परिवार के पहले तीन सदस्य जल से भी हल्के होते हैं। वर्ग में ऊपर से नीचे जाने पर घनत्व बढ़ता है।
क्षार धातुओं के परमाणुओं का आकार बड़ा होता है; अत: वे अन्तराकाश में अधिक संकुलित (closely packed) नहीं होते हैं तथा इनका घनत्व कम होता है। वर्ग में ऊपर से नीचे जाने पर परमाणु आकार बढ़ने के कारण घनत्व कम होना चाहिए; परन्तु यह बढ़ता है। चूंकि परमाणु आकार के साथ-साथ परमाणु भार भी बढ़ता है जिसका प्रभाव अधिक है; अत: घनत्व (भार/आयतन) वर्ग में नीचे जाने पर। बढ़ता है। इसका एक अपवाद पोटेशियम (K) हैं जिसका घनत्व सोडियम से कम है। इसका मुख्य कारण पोटेशियम के परमाणु आकार तथा परमाणु आयतन में असामान्य वृद्धि है।

9. जलयोजन एन्थैल्पी (Hydration enthalpy)-जलयोजन एन्थैल्पी (A Hd ) वह ऊर्जा है जो जलीय विलयन में आयनों के जलयोजित होने पर मुक्त होती है। क्षार धातु आयनों की जलयोजन एन्थैल्पी निम्नलिखित क्रम में होती है-

Li+ >Na+ >K+ > Rb+ >Cs+

जलयोजन में आयनों तथा चारों ओर उपस्थित जल अणुओं के मध्य आकर्षण होता है। अतः आयन का आकार छोटा होने पर, इस पर आवेश का परिमाण अधिक होगा तथा इनकी जलयोजित होने की क्षमता उतनी ही अधिक होगी। क्षार धातुओं में Li+ आयन की जलयोजन एन्थैल्पी सर्वाधिक होती है। इसलिए लीथियम के लवण अधिकतर जलयोजी प्रवृत्ति के होते हैं (LiC1.2H2O)

10.ज्वाला में रंग देना(Colouration to the flame)-क्षार धातुओं के यौगिकों (मुख्य रूप से क्लोराइड) को प्लैटिनम के तार पर गर्म करने पर ये ज्वाला को विशिष्ट रंग प्रदान करते हैं।

चूँकि क्षार धातुओं की आयनन एन्थैल्पी बहुत कम होती है; अत: इनके इलेक्ट्रॉनों को उच्च ऊर्जा स्तर तक उत्तेजित करना सरल होता है। जब इन धातुओं को प्लैटिनम की तार पर रखकर ज्वाला दी जाती है। तो ज्वाला की ऊर्जा से इलेक्ट्रॉन नाभिक से दूर उच्च ऊर्जा स्तर पर पहुँच जाते हैं। पुनः जब ये उत्तेजित इलेक्ट्रॉन उच्च ऊर्जा स्तर से निम्न ऊर्जा स्तर पर आते हैं तो विकिरण के रूप में दृश्य प्रकाश उत्सर्जित करते हैं। फलस्वरूप क्षार धातुएँ ज्वाला को विशिष्ट रंग प्रदान करती हैं।

11. प्रकाश-विद्युत प्रभाव (Photoelectric effect)-लीथियम के अतिरिक्त सभी क्षार धातुएँ प्रकाश-विद्युत प्रभाव प्रदर्शित करती हैं। प्रकाश-विद्युत प्रभाव को इस प्रकार परिभाषित किया जा सकता है–“जब किसी धातु की सतह पर निश्चित आवृत्ति की किरणें टकराती हैं तो धातु की सतह से इलेक्ट्रॉन उत्सर्जित होकर निकलते हैं। इसे प्रकाश-विद्युत प्रभाव कहते हैं। दूसरे शब्दों में, धातु की सतह पर फोटॉन के प्रहार से इलेक्ट्रॉनों का उत्सर्जन प्रकाश-विद्युत प्रभाव कहलाता है।
प्रकाश-विद्युत प्रभाव का कारण क्षार धातुओं की न्यूनतम आयनन एन्थैल्पी है। धातु की सतह पर गिरने वाले फोटॉनों के पास इतनी ऊर्जा होती है कि वे इलेक्ट्रॉनों को धातु की सतह से उत्सर्जित कर देते हैं। चूंकि लीथियम के छोटे आकार के कारण इसकी आयनन ऊर्जा अधिक होती है; अतः इस धातु पर गिरने वाला फोटॉन नाभिक और, इलेक्ट्रॉनों के बीच आकर्षण बल को कम करने में सक्षम नहीं होता है। इस प्रकार प्रकाश के.दृश्य क्षेत्र में यह धातु प्रकाश-विद्युत प्रभाव प्रदर्शित नहीं करती।

रासायनिक गुण (Chemical Preperties)
क्षार धातुएँ बड़े आकार तथा कर्म आयनन एन्थैल्पी के कारण अत्यधिक क्रियाशील होती हैं। इनकी क्रियाशीलता वर्ग में ऊपर से नीचे क्रमशः बढ़ती जाती है। इस वर्ग के सदस्यों के महत्त्वपूर्ण रासायनिक गुण निम्नलिखित हैं-

1. वायु के साथ अभिक्रियाशीलता (Reactivity with air)-क्षार धातुएँ वायु की उपस्थिति में मलिन (exposed) हो जाती हैं; क्योकि वायु की उपस्थिति में इन पर ऑक्साइड तथा हाइड्रॉक्साइड की पर्त बन जाती है। ये ऑक्सीजन में तीव्रता से जलकर ऑक्साइड बनाती हैं। लीथियम और सोडियम क्रमशः मोनोक्साइड तथा परॉक्साइड का निर्माण करती हैं, जबकि अन्य धातुओं द्वारा सुपर ऑक्साइड आयन का निर्माण होता है। सुपर ऑक्साइड 0,- बड़े धनायनों; जैसे-K’, RB’ तथा Cs’ की उपस्थिति में स्थायी होता है।

4Li+O2 → 2Li2O (ऑक्साइड)
2Na +O2 → Na2O2 (
परॉक्साइड)
M+O2 → MO2 (
सुपर ऑक्साइड) (M =K, Rb, Cs)

इन सभी ऑक्साइडों में क्षार की ऑक्सीकरण अवस्था +1 होती है। लीथियम अपवादस्वरूप वायु में उपस्थित नाइट्रोजन से अभिक्रिया करके नाइट्राइड, LisN बना लेता है। इस प्रकार लीथियम भिन्न स्वभाव दर्शाता है। क्षार धातुओं को वायु एवं जल के प्रति उनकी अति सक्रियता के कारण साधारणतया रासायनिक रूप से अक्रिय विलायकों; जैसे-किरोसिन में रखा जाता है।

2. जल के साथ अभिक्रियाशीलता (Reactivity with water)-क्षार धातुएँ, इनके ऑक्साइड, परॉक्साइड तथा सुपर ऑक्साइड भी जल के साथ अभिक्रिया करके हाइड्रॉक्साइड, जो घुलनशील होते हैं तथा क्षार (alkalies) कहलाते हैं, बनाती हैं।

2Na + 2H2O → 2Na+ + 2OH +H2
Li2O+H2O → 2LiOH
Na2O2 + 2H2O → 2NaOH +H2O2
2KO2 + 2H2O → 2KOH + H2O2 +O2 ↑

यद्यपि लीथियम के मानक इलेक्ट्रोड विभव (E) का मान अधिकतम ऋणात्मक होता है, परन्तु जल के साथ इसकी अभिक्रियाशीलता सोडियम की तुलना में कम है, जबकि सोडियम के E] का मान अन्य क्षार धातुओं की अपेक्षा न्यून ऋणात्मक होता है। लीथियम के इस व्यवहार का कारण इसके छोटे आकार तथा अत्यधिक जलयोजन ऊर्जा का होना है। अन्य क्षार धातुएँ जल के साथ विस्फोटी अभिक्रिया करती हैं। चूँकि अभिक्रिया उच्च ऊष्माक्षेपी होती है तथा विमुक्त होने वाली हाइड्रोजन आग पकड़ लेती है, इसलिए क्षार धातुओं को जल के सम्पर्क में नहीं रखते। क्षार धातुएँ प्रोटॉनदाता (जैसे-ऐल्कोहॉल, गैसीय अमोनिया, ऐल्काइन आदि) से भी अभिक्रियाएँ करती हैं।

3. डाईहाइड्रोजन से अभिक्रियाशीलता (Reactivity with dihydrogen)—लगभग 673K (लीथियम के लिए 1073K) पर क्षार धातुएँ डाइहाइड्रोजन से अभिक्रिया कर हाइड्राइड बनाती हैं। सभी क्षार धातुओं के हाइड्राइड रंगहीन, क्रिस्टलीय एवं आयनिक होते हैं। इन हाइड्राइडों के गलनांक उच्च होते हैं।

हाइड्राइडों का आयनिक गुण Li से Cs तक बढ़ता है। क्षार धातुओं की कम आयनन एन्थैल्पी के कारण इनके परमाणु सरलता से संयोजी इलेक्ट्रॉन खोकर आयनिक हाइड्राइड (M+H) बनाते हैं। चूंकि आयनन एन्थैल्पी वर्ग में ऊपर से नीचे जाने पर घटती है; अतः धनात्मक आयन बनाने की प्रवृत्ति उसी अनुसार बढ़ती है। इसलिए हाइड्रोइडों का आयनिक गुण भी बढ़ता है।

4. हैलोजेन से अभिक्रियाशीलता (Reactivity with halogens)-क्षार धातुएँ हैलोजेन से शीघ्र प्रबल अभिक्रिया करके आयनिक ऑक्साइड हैलाइड M+X बनाती हैं।

2M+X2 →2M+ X

यद्यपि लीथियम के हैलाइड आंशिक रूप से सहसंयोजक होते हैं। इसका कारण लीथियम की उच्च ध्रुवण-क्षमता है। (धनायन के कारण ऋणायन के इलेक्ट्रॉन अभ्र का विकृत होनाध्रुवणता (polarisation) कहलाता है।) लीथियम आयन का आकार छोटा है; अत: यह हैलाइड आयन के इलेक्ट्रॉन अभ्र को विकृत करने की अधिक क्षमता दर्शाता है। चूंकि बड़े आकार का ऋणायन आसानी से विकृत हो जाता है, इसलिए लीथियम आयोडाइड सहसंयोजक प्रकृति सबसे अधिक दर्शाते हैं। अन्य क्षार धातुएँ आयनिक प्रवृत्ति की होती हैं। इनके गलनांक तथा क्वथनांक उच्च होते हैं। गलित हैलाइड विद्युत के सुचालक होते हैं। इनका प्रयोग क्षार धातुएँ बनाने में किया जाता है।

5. अपचायक प्रकृति (Reducing nature)-क्षार धातुएँ प्रबल अपचायक के रूप में कार्य करती हैं। जिनमें लीथियम प्रबलतम एवं सोडियम दुर्बलतम अपचायक है। मानक इलेक्ट्रोड विभव (E), जो अपचायक क्षमता का मापक है, सम्पूर्ण परिवर्तन का प्रतिनिधित्व करता है-

M(s) → M(g) ऊर्ध्वपातन एन्थैल्पी
M(g) → M+(g) + e 
आयनन एन्थैल्पी
M+ (g) + H22O → M+ (aq)
जलयोजन एन्थैल्पी

स्पष्ट है कि E का मान जितना कम होगा अपचायक गुण उतना ही अधिक होगा। लीथियम आयन का आकार छोटा होने के कारण इसकी जलयोजन एन्थैल्पी का मान अधिकतम होता है, जो इसके उच्च ऋणात्मक E मान तथा इसके प्रबल अपचायक होने की पुष्टि करता है।

6. द्रव अमोनिया में विलयन (Solution in liquid ammonia)-क्षार धातुएँ द्रव अमोनिया में घुलनशील हैं। अमोनिया में इनके विलयन का रंग गहरा नीला होता है एवं विलयन प्रकृति में विद्युत का सुचालक होता है।

M+(x+y)NH3 → [M(NH3)x]+ + [NH3)y]

विलयन का नीला रंग अमोनीकृत इलेक्ट्रॉनों के कारण होता है, जो दृश्य प्रकाश क्षेत्र की संगत ऊर्जा का अवशोषण करके विलयन को नीला रंग प्रदान करते हैं। अमोनीकृत विलयन अनुचुम्बकीय (paramagnetic) होता है, जो कुछ समय पड़े रहने पर हाइड्रोजन को मुक्त करता है। फलस्वरूप, विलयन में ऐमाइड बनता है।

M+ (am)+e +NH3(2) → MNH2 (am) + 1/2H2(g)

जहाँ ‘am’ अमोनीकृत विलयन दर्शाता है। सान्द्र विलयन में नीला रंग ब्रॉन्ज रंग में बदल जाता है और विलयन प्रतिचुम्बकीय (diamagnetic) हो जाता है।

7. सल्फर तथा फॉस्फोरस के साथ अभिक्रिया (Reaction with sulphur and phosphorus)- क्षार धातुएँ सल्फर तथा फॉस्फोरस से गर्म करने पर अभिक्रिया करके सम्बन्धित सल्फाइड तथा फॉस्फाइड बनाती हैं।

सोडियम फॉस्फाइड सल्फाइड तथा फॉस्फाइड दोनों जल द्वारा जल-अपघटित हो जाते हैं।

Question - 2 : - क्षारीय मृदा धातुओं के सामान्य अभिलक्षण एवं गुणों में आवर्तिता की विवेचना कीजिए।

Answer - 2 : -

वर्ग 2 के तत्व: क्षारीय मृदा धातुएँ (Elements of Group2:Alkaline Earth Metals) आवर्त सारणी के वर्ग 2 के तत्वं हैं-बेरिलियम (Be), मैग्नीशियम (Mg), कैल्सियम (Ca), स्ट्रॉन्शियम (Sr), बेरियम (Ba) एवं रेडियम (Ra) बेरिलियम के अतिरिक्त अन्य तत्व संयुक्त रूप सेमृदा धातुएँकहलाती हैं। प्रथम तत्व बेरिलियम वर्ग के अन्य तत्वों से भिन्नता दर्शाता है एवं ऐलुमिनियम के साथ विकर्ण सम्बन्ध (diagonal relationship) दर्शाता है। वर्ग का अन्तिम तत्व रेडियम रेडियोऐक्टिव प्रकृति का है। इन तत्वों को विशिष्ट नाम निम्नलिखित कारणों से दिया जाता है-

  1. इन तत्वों के ऑक्साइड क्षार धातुओं के समान जल में घुलकर हाइड्रॉक्साइड अथवा क्षार बनाते हैं।
  2. मृदानाम इन्हें इसलिए दिया गया; क्योंकि ऐलुमिना (Al2O3) जैसे पदार्थ ऊष्मा के प्रति अधिक स्थायी होते हैं। कैल्सियम, स्ट्रॉन्शियम तथा बेरियम के ऑक्साइड भी ऊष्मा के प्रति स्थायी होते हैं तथा अत्यधिक गर्म किए जाने पर भी अपघटित नहीं होते। ये धातु ऑक्साइड तथा
    धातुएँ भी क्षारीय मृदा कहलाती हैं।
इलेक्ट्रॉनिक विन्यास(Electronic Configuration)
इन तत्वों के संयोजकता-कोश के s-कक्षक में 2 इलेक्ट्रॉन होते हैं। इनका सामान्य इलेक्ट्रॉनिक विन्यास [उत्कृष्ट गैस]ns2 होता है। क्षार धातुओं के समान ही इनके यौगिक भी मुख्यत: आयनिक प्रकृति के होते हैं।

क्षारीय मृदा धातुओं के सामान्य अभिलक्षण तथा गुणों में आवर्तिता इनके भौतिक तथा रासायनिक गुणों से स्पष्ट होती है। इनकी विवेचना निम्नवत् है-
भौतिक गुण (Physical Properties)
क्षारीय मृदा धातु-परिवार के सदस्यों के महत्त्वपूर्ण भौतिक गुण सारणी-2 में सूचीबद्ध हैं। इनका संक्षिप्त विवरण निम्नलिखित है-
1.
परमाण्वीय एवं आयनिक त्रिज्या (Atomic and ionicradii)-आवर्त सारणी के संगत आवर्ती में क्षार धातुओं की तुलना में क्षारीय मृदा धातुओं की परमाण्वीय एवं आयनिक त्रिज्याएँ छोटी होती हैं। ये वर्ग में ऊपर से नीचे जाने पर बढ़ती हैं। इसका कारण इन तत्वों के नाभिकीय आवेशों में वृद्धि होना

2. आयनन एन्थैल्पी (lonisation enthalpies)-क्षारीय मृदा धातुओं के परमाणुओं के बड़े आकार के कारण इनकी आयनने एन्थैल्पी के मान न्यून होते हैं। चूंकि वर्ग में आकार ऊपर से नीचे क्रमश: बढ़ता जाता है; अत: इनकी आयनन एन्थैल्पी के मान कम होते जाते हैं जैसा कि सारणी-2 में स्पष्ट है। क्षारीय मृदा धातुओं के प्रथम आयनन एन्थैल्पी का मान क्षार धातुओं के प्रथम आयनन एन्थैल्पी के मानों की तुलना में अधिक है। यह इनकी क्षार धातुओं की संगत तुलनात्मक रूप से छोटे आकार होने के कारण होती है, परन्तु इनके द्वितीय आयनन एन्थैल्पी के मान क्षार धातुओं के द्वितीय आयनन एन्थैल्पी के मानों की तुलना में कम हैं। उदाहरणार्थ-Mg के प्रथम यिनन एन्थैल्पी को मान Na से अधिक है जिसका कारण Mg का छोटा आकार तथा सममित्ताकार इलेक्ट्रॉनिक विन्यास है। परन्तु एक इलेक्ट्रॉन खोकर Na+ आयन उत्कृष्ट गैस निऑन को विन्यास (1s2,2s2 2p6)प्राप्त कर लेता है, जबकि Mg के संयोजकता कोश में अभी भी एक इलेक्ट्रॉन शेष रह जाता है (1s2,2s2 2p6,3s1) सोडियम के द्वितीयक आयनन एन्थैलपी का उच्च मान इसके सममिताकार इलेक्ट्रॉनिक विन्यास के कारण होता है।

3. जलयोजन एन्थैल्पी (Hydration enthalpy)-क्षार धातुओं के समान इसमें भी वर्ग में ऊपर से नीचे आयनिक आकार बढ़ने पर इनकी जलयोजन एन्थैल्पी के मान कम होते जाते हैं।

Be2+ >Mg2+ >Ca2+ >Sr2+ > Ba2+

क्षारीय मृदा धातुओं की जलयोजन एन्थैल्पी क्षार धातुओं की जलयोजन एन्थैल्पी की तुलना में अधिक होती है। इसीलिए मृदा धातुओं के यौगिक क्षार धातुओं के यौगिकों की तुलना में अधिक जलयोजित होते हैं। जैसे–MgCl2 एवं CaCl2 जलयोजित अवस्था MgCl2.6H2O एवं CaCl2.6H2Oमें पाए जाते हैं, जबकि NaCl एवं KCI ऐसे हाइड्रेट नहीं बनाते हैं।

4. धात्विक गुण (Metallic character)-क्षारीय मृदा धातुएँ सामान्यतया चाँदी की भाँति सफेद, चमकदार एवं नर्म, परन्तु अन्य धातुओं की तुलना में कठोर होती हैं। बेरिलियम तथा मैग्नीशियम लगभग धूसर रंग (greyish) के होते हैं। क्षारीय मृदा धातुओं में समान आवर्त में उपस्थित क्षार धातुओं की तुलना में प्रबल धात्विक बन्ध होते हैं। उदाहरणार्थ-मैग्नीशियम, सोडियम की तुलना में अधिक कठोर तथा सघन होता है।

5. गलनांक तथा क्वथनांक: (Melting and boiling points)–इनके गलनांक एवं क्वथनांक क्षार धातुओं की तुलना में उच्च होते हैं; क्योंकि इनके आकार छोटे होने के कारण ये निविड संकुलित (closely packed) होते हैं तथा इनमें प्रबल धात्विक बन्ध होते हैं। फिर भी इनके गलनांकों तथा क्वथनांकों में कोई नियमित परिवर्तन नहीं दिखता है।

6. धनविद्युती गुण (Electropositive character)–निम्न आयनन एन्थैल्पी के कारण क्षारीय मृदा धातुएँ प्रबल धनविद्युती होती हैं। धनविद्युती गुण ऊपर से नीचे Be से Ba तक बढ़ता है।

7.ज्वाला को रंग प्रदान करना(Colouration to the flame)-कैल्सियम, स्ट्रॉन्शियमं एवं बेरियम ज्वाला को क्रमशः ईंट जैसा लाल (brick red) रंग, किरमिजी लाल (crimson red) एवं हरा (apple’. green) रंग प्रदान करते हैं। ज्वाला में उच्च ताप पर वाष्प-अवस्था में क्षारीय मृदा धातुओं के बाह्यतम कोश के इलेक्ट्रॉन उत्तेजित होकर उच्च ऊर्जा-स्तर पर चले जाते हैं। ये उत्तेजित इलेक्ट्रॉन जब पुन: अपनी तलस्थ अवस्था में लौटते हैं, तब दृश्य प्रकाश के रूप में ऊर्जा उत्सर्जित होती है। परिणामस्वरूप ज्वाला रंगीन दिखने लगती है। बेरिलियम तथा मैग्नीशियम के बाह्यतम कोशों के इलेक्ट्रॉन इतनी प्रबलता से बँधे रहते हैं कि ज्वाला की ऊर्जा द्वारा इनका उत्तेजित होना कठिन हो जाता है। अतः ज्वाला में इन धातुओं का अपना कोई अभिलाक्षणिक रंग नहीं होता है। गुणात्मक विश्लेषण में Ca, Sr एवं Ba मूलकों की पुष्टि ज्वाला-परीक्षण के आधार पर की जाती है तथा इनकी सान्द्रता का निर्धारण ज्वाला प्रकाशमापी द्वारा किया जाता है। क्षारीय मृदा धातुओं की क्षार धातुओं की तरह विद्युत एवं ऊष्मीय चालकता उच्च होती है। यह इनका अभिलाक्षणिक गुण होता है।
सारणी-2 : क्षारीय मृदा धातुओं के परमाण्वीय एवं भौतिक गुण (Atomic and PhysicalProperties of the Alkaline Earth Metals)

8. विद्युत-ऋणात्मकता (Electronegativity)-क्षारीय मृदा धातुओं के विद्युत-ऋणात्मकता मान क्षार धातुओं के लगभग समान होते हैं (कुछ अधिक) विद्युत-ऋणात्मकता मान बेरिलियम से रेडियम तक घटते हैं तथा आयनिक यौगिक बनाने की प्रवृत्ति में वृद्धि व्यक्त करते हैं। बेरिलियम का उच्च विद्युत ऋणात्मकता मान (1.5) प्रदर्शित करता है कि यह धातु आयनिक यौगिक बनाती है।
रासायनिक गुण (Chemical Properties)
क्षारीय मृदा धातुएँ क्षार धातुओं से कम क्रियाशील होती हैं। इन तत्वों की अभिक्रियाशीलता वर्ग में ऊपरे: से नीचे जाने पर बढ़ती है।
1.
वायु एवं जल के प्रति अभिक्रियाशीलता (Reactivity with airand water)–बेरिलियम एवं मैग्नीशियम गतिकीय रूप से ऑक्सीजन तथा जल के प्रति निष्क्रिय हैं; क्योंकि इन धातुओं के पृष्ठों (surfaces) पर ऑक्साइड की फिल्म जम जाती है। फिर भी, बेरिलियम चूर्ण रूप में वायु में जलने पर BeO एवं Be2N3 बना लेता है। मैग्नीशियम अधिक धनविद्युतीय है, जो वायु में अत्यधिक चमकीले प्रकाश के साथ जलते हुए MgO तथा Mg3N2 बना लेता है। कैल्सियम, स्ट्रॉन्शियम एवं बेरियम वायु से शीघ्र अभिक्रिया करके ऑक्साइड तथा नाइट्राइड बनाते हैं। ये जल से और भी अधिक तीव्रता से अभिक्रिया करते हैं; यहाँ तक कि ठण्डे जल से अभिक्रिया कर हाइड्रॉक्साइड बनाते हैं।

2. हैलोजेन के प्रति अभिक्रियाशीलता (Reactivity with halogens)-सभी क्षारीय मृदा धातुएँ हैलोजेन के साथ उच्च ताप पर अभिक्रिया करके हैलाइड बना लेती हैं-

M+X2 →MX2 (X= F, CI, Br, I)

BeF2 बनाने की सबसे सरल विधि (NH4)2BeF4 का तापीय अपघटन है, जबकि BeCl2, ऑक्साइड से सरलतापूर्वक बनाया जा सकता है

इन धातुओं के ऑक्साइडों, हाइड्रॉक्साइडों तथा कार्बोनेटों पर हैलोजेन अम्लों (HX) की प्रतिक्रिया द्वारा भी हैलाइड बनाए जा सकते हैं।

M+2HX → MX2 +H2
MO+2HX→ MX2 +H2O
M(OH)2 + 2HX → MX2 + 2H2O
MCO3 +2HX → MX2 +H2O+CO2

3. हाइड्रोजन के प्रति अभिक्रियाशीलता (Reactivity with dihydrogen)-बेरिलियम के अतिरिक्त सभी क्षारीय मृदा धातुएँ गर्म करने पर डाइहाइड्रोजन से अभिक्रिया करके हाइड्राइड बनाती हैं।

BeH2 को BeCl2 एवं LiAlH4 की अभिक्रिया से बनाया जा सकता है

2BeCl2 +LiAlH4 →2BeH2 +LiCl + AlCl3

BeH2 तथा MgH2 प्रवृत्ति में सहसंयोजी होते हैं, जबकि अन्य धातुओं के हाइड्राइडों की आयनिक संरचना होती है। आयनिक हाइड्राइड; जैसे—CaH2 (यह हाइड्रोलिथ भी कहलाता है।) जल से क्रिया करके डाइहाइड्रोजन गैस मुक्त करता है।

4. अम्लों के प्रति अभिक्रियाशीलता (Reactivity with acids)-क्षारीय मृदा धातुएँ शीघ्र ही अम्लों . से अभिक्रिया कर डाइहाइड्रोजन गैस मुक्त करती हैं।

M+2HCI→MCl2 +H2 ↑

5. अपचायक प्रकृति (Reducing nature)—प्रथम वर्ग की धातुओं के समान क्षारीय मृदा धातुएँ प्रबल अपचायक हैं। इसका बोध इनके अधिक ऋणात्मक अपचयन विभव के मानों से होता है। यद्यपि इनकी अपचयन-क्षमता क्षार धातुओं की तुलना में कम होती है। बेरिलियम के अपचयन विभव का मान अन्य क्षारीय मृदा धातुओं से कम ऋणात्मक होता है फिर भी इसकी अपचयन-क्षमता का कारण Be2+ आयन के छोटे आकार, इसकी उच्च जलयोजन ऊर्जा एवं धातु की उच्चं परमाण्वीयकरण एन्थैल्पी का होना है।

6. द्रव अमोनिया में विलयन (Solution in liquid ammonia)-क्षार धातुओं की भाँति क्षारीय मृदा धातुएँ भी द्रव अमोनिया में विलेय होकर गहरे नीले-काले रंग का विलयन बना लेती हैं। इस विलयन से धातुओं के अमोनीकृत आयन प्राप्त होते हैं-

M+(x+ y)NH3 → [M(NH3)x]2+ +2[e(NH3)y]

इन विलयनों से पुन: अमोनिएट्स (ammoniates) [M(NH3)6]2+ प्राप्त किए जा सकते हैं।

7. कार्बोनेटों का बनना (Formation of carbonates)-धातु के हाइड्रॉक्साइडों के जलीय विलयनों में CO2 की वाष्प की सीमित मात्रा प्रवाहित करने पर धातुओं के कार्बोनेट सफेद अवक्षेप के रूप में प्राप्त किए जा सकते हैं।

Question - 3 : - क्षार धातुएँ प्रकृति में क्यों नहीं पाई जाती हैं?

Answer - 3 : - बहुत अधिक अभिक्रियाशीलता के कारण क्षार धातुएँ प्रकृति में मुक्त अवस्था में नहीं पायी जाती हैं। जाती हैं।

Question - 4 : - Na2O3 में सोडियम की ऑक्सीकरण अवस्था ज्ञात कीजिए।

Answer - 4 : -

माना Na2O2 में सोडियम की ऑक्सीकरण अवस्था x है। Na2O2 एक परॉक्साइड है और इसमें एक परॉक्सी ——O बन्ध है। इसमें ऑक्सीजन की ऑक्सीकरण अवस्था -1 है।
इस प्रकार, Na2O2 के लिये
(2xx)+(-1×2)= 0
x = +1

Question - 5 : - पोटैशियम की तुलना में सोडियम कम अभिक्रियाशील क्यों है? बताइए।

Answer - 5 : -

सोडियम का मानक झ्लेक्ट्रोड विभव (E = -2.714 V) पोटैशियम के मानक इलेक्ट्रोड विभ्रव (-2.925 V) की तुलना में अधिक है। इसके अतिरिक्त, सोडियम की आयनन एन्थैल्पी (496kJ mol-1)भी पोटैशियम की आयनन एन्थैल्पी (419kJ mol-1 से अधिक है। अत: सोडियम पोटैशियम से कम अभिक्रियाशील है।

Question - 6 : -
निम्नलिखित के सन्दर्भ में क्षार धातुओं एवं क्षारीय मृदा धातुओं की तुलना कीजिए-
(क) आयनन एन्थैल्पी,
(ख) ऑक्साइडों की क्षारकता,
(ग) हाइड्रॉक्साइडों की विलेयता।

Answer - 6 : -

1. क्षारीय मृदा धातुओं की आयनन एन्थैल्पी क्षार धातुओं की तुलना में अधिक होती है, क्योंकि क्षारीय मृदा धातुओं में नाभिकीय आवेश अधिक होता है।
2. क्षार धातु ऑक्साइड क्षारीय मृदा धातु ऑक्साइडों की तुलना में अधिक क्षारीय होते हैं, क्योंकि क्षार धातुएँ क्षारीय मृदा धातुओं की तुलना में अधिक विद्युत धनात्मक होती हैं।
3. क्षार धातु हाइड्रॉक्साइड क्षारीय मृदा धातु हाइड्रॉक्साइडों की तुलना में जल में अधिक घुलनशील होते हैं, क्योंकि क्षारीय मृदा धातुओं की जालक एन्थैल्पी क्षार धातुओं की तुलना में अधिक होती है।

Question - 7 : - लीथियम किस प्रकार मैग्नीशियम से रासायनिक गुणों में समानताएँ दर्शाता है?

Answer - 7 : -

लीथियम एवं मैग्नीशियम के रासायनिक गुणों में समानताएँ (Similarities betweenChemical Properties of Lithium and Magnesium)
लीथियम एवं मैग्नीशियम के रासायनिक गुणों में समानता के प्रमुख बिन्दु निम्नवत् हैं-

  1. लीथियम एवं मैग्नीशियम जल के साथ धीमी गति से अभिक्रिया करते हैं। इनके ऑक्साइड एवं हाइड्रॉक्साइड बहुत.कम घुलनशील हैं। हाइड्रॉक्साइड गर्म करने पर विघटित हो जाते हैं। दोनों ही नाइट्रोजन से सीधे संयोग करके नाइट्राइडे क्रमश: Li3N एवं Mg3N2 बनाते हैं।
  2. Li2O एवं MgO ऑक्सीजन के आधिक्य से अभिक्रिया करके सुपर ऑक्साइड नहीं बनाते हैं।
  3. लीथियम एवं मैग्नीशियम धातुओं के कार्बोनेट गर्म करने पर सरलतापूर्वक विघटित होकर उनके ऑक्साइड एवं CO2 बनाते हैं। दोनों ही ठोस हाइड्रोजन कार्बोनेट नहीं बनाते हैं।
  4. LiCl एवं MgCl2 एथेनॉल में विलेय हैं।
  5. LiCl एवं MgCl2 दोनों ही प्रस्वेद्य (deliquescent) यौगिक हैं। ये जलीय विलयन से | LiCl.2H2O एवं MgCl2.8H2O के रूप में क्रिस्टलीकृत होते हैं।

Question - 8 : - क्षार धातुएँ तथा क्षारीय मृदा धातुएँ रासायनिक अपचयन विधि से क्यों नहीं प्राप्त किए जा सकते हैं? समझाइए।

Answer - 8 : - क्षार धातुएँ तथा क्षारीय मृदा धातुएँ सामान्य उपयोग में आने वाले अपचायकों से अधिक प्रबल अपचायक हैं। इसलिए ये रासायनिक अपचयन विधियों द्वारा प्राप्त नहीं की जा सकती हैं।

Question - 9 : - प्रकाश विद्युत सेल में लीथियम के स्थान पर पोटैशियम एवं सीजियम क्यों प्रयुक्त किए जाते हैं?

Answer - 9 : -

लीथियम की आयनन एन्थैल्पी (ionisation enthalpy) (520 kJmol-1),पोटैशियम (419kJ mol-1) और सीजियम (376 kJ mo-1) की आयनन एन्थैल्पी से बहुत अधिक है। इस कारण यह प्रकाश की क्रिया से इलेक्ट्रॉन का उत्सर्जन नहीं करता जबकि पोटैशियम और सीजियम ऐसा करने में समर्थ हैं। इसलिए प्रकाश वैद्युत सेल में लीथियम के स्थान पर पोटैशियम तथा सीजियम को प्रयुक्त किया जाता है।

Question - 10 : - जब एक क्षार धातु को द्रव अमोनिया में घोला जाता है, तब विलयन विभिन्न रंग प्राप्त कर सकता है। इस प्रकार के रंग-परिवर्तन का कारण बताइए।

Answer - 10 : -

जब एक क्षार धातु को द्रव अमोनिया में घोला जाता है तो अमोनीकृत धनायन (ammoniated cations) और अमोनीकृत इलेक्ट्रॉन् (ammoniated electrons) बनते हैं।

अमोनीकृत इलेक्ट्रॉन दृश्य प्रकाश (visible light) से ऊर्जा अवशोषित कर उत्तेजित हो जाते हैं और विलयन में गहरी नीला रंग उत्पन्न करते हैं। सान्द्र विलयन में, नीला रंगे काँस्य रंग में बदल जाता है।

Free - Previous Years Question Papers
Any questions? Ask us!
×