MENU
Question -

If f: R → R be defined by f(x) = x3 −3,then prove that f−1 exists and find a formula for f−1.Hence, find f−1 (24) and f−1 (5).



Answer -

Givenf: R → R be defined by f(x) = x3 −3

Now we have to prove thatf−1 exists

Injectivity of f:

Let x and y be two elements in domain (R),

Such that, x3 − 3 = y3 − 3            

 x3 = y3        

 x = y

So, f isone-one.

Surjectivityof f:

Let y be in the co-domain (R)

Such that f(x) =y

x3 –3 = y

 x3 =y + 3 

x = (y+3) in R

 f is onto.

So, f is a bijection and, hence, it is invertible.

Finding f -1:

Let f-1(x) = y……..(1)

 x= f(y)

 x = y−3

 x + 3 = y3

 y = (x + 3) = f-1(x)        [from (1)]

So, f-1(x)= (x + 3)

Now, f-1(24)= (24 + 3)

= 27

= 33

= 3

And f-1(5)= (5 + 3)

= 8

= 23

= 2

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×