In a ∆ABC, AD is the bisector of ∠A, meeting side BC at D.
(i) If BD = 2.5 cm, AB = 5 cm and AC = 4.2 cm, find DC. (C.B.S.E. 1996)
(ii) If BD = 2 cm, AB = 5 cm and DC = 3 cm, find AC. (C.B.S.E. 1992)
(iii) If AB = 3.5 cm, AC = 4.2 cm and DC = 2.8 cm, find BD. (C.B.S.E. 1992)
(iv) If AB = 10 cm, AC = 14 cm and BC = 6 cm, find BD and DC.
(v) If AC = 4.2 cm, DC = 6 cm and BC = 10 cm, find AB. (C.B.S.E. 1997C)
(vi) If AB = 5.6 cm, AC = 6 cm and DC = 3 cm, find BC. (C.B.S.E. 2001C)
(vii) If AD = 5.6 cm, BC = 6 cm and BD = 3.2 cm, find AC. (C.B.S.E. 2001C)
(viii) If AB = 10 cm, AC = 6 cm and BC = 12 cm, find BD and DC. (C.B.S.E. 2001)