MENU

RD Chapter 17 Increasing and Decreasing Functions Ex 17.1 Solutions

Question - 1 : -

Prove that thefunction f(x) = loge xis increasing on (0, ∞).

Answer - 1 : -

Let x1,x2  (0, ∞)

We have, x2

 loge x1 < loge x2

 f(x1) < f (x2)

So, f(x) is increasing in (0, ∞)

Question - 2 : - Prove that the function f(x) = loga x is increasing on(0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1.

Answer - 2 : -


Question - 3 : -

Prove that f(x) =ax + b, where a, b are constants and a > 0 is an increasing function on R.

Answer - 3 : -

Given,

f (x) = ax + b, a > 0

Let x1,x2  R and x1 > x2

 ax1 > ax2 for some a > 0

 ax1 + b> ax2 + b for some b

 f(x1) > f(x2)

Hence, x1 >x f(x1) > f(x2)

So, f(x) is increasing function of R

Question - 4 : -

Prove that f(x) =ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Answer - 4 : -

Given,

f (x) = ax + b, a < 0

Let x1,x2  R and x1 > x2

 ax1 < ax2 for some a > 0

 ax1 + b < ax2 + b for some b

 f(x1) < f(x2)

Hence, x1 >x2 f(x1) < f(x2)

So, f(x) is decreasing function of R

Question - 5 : -

Answer - 5 : -


Question - 6 : -

Answer - 6 : -


Question - 7 : -

Answer - 7 : -


Question - 8 : -

Answer - 8 : -


Question - 9 : -

Answer - 9 : -


Free - Previous Years Question Papers
Any questions? Ask us!
×