The Total solution for NCERT class 6-12
Prove that thefunction f(x) = loge xis increasing on (0, ∞).
Answer - 1 : -
Let x1,x2 ∈ (0, ∞)
We have, x1 2
⇒ loge x1 < loge x2
⇒ f(x1) < f (x2)
So, f(x) is increasing in (0, ∞)
Answer - 2 : -
Prove that f(x) =ax + b, where a, b are constants and a > 0 is an increasing function on R.
Answer - 3 : -
Given,
f (x) = ax + b, a > 0
Let x1,x2 ∈ R and x1 > x2
⇒ ax1 > ax2 for some a > 0
⇒ ax1 + b> ax2 + b for some b
⇒ f(x1) > f(x2)
Hence, x1 >x2 ⇒ f(x1) > f(x2)
So, f(x) is increasing function of R
Prove that f(x) =ax + b, where a, b are constants and a < 0 is a decreasing function on R.
Answer - 4 : -
f (x) = ax + b, a < 0
⇒ ax1 < ax2 for some a > 0
⇒ ax1 + b < ax2 + b for some b
⇒ f(x1) < f(x2)
Hence, x1 >x2⇒ f(x1) < f(x2)
So, f(x) is decreasing function of R
Answer - 5 : -
Answer - 6 : -
Answer - 7 : -
Answer - 8 : -
Answer - 9 : -