MENU
Question -

Find f −1 if it exists: f: A → B, where 

(i) A = {0, −1, −3, 2}; B = {−9, −3, 0, 6} and f(x) =3 x.

(ii) A = {1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81}and f(x) = x2



Answer -

(i) Given A = {0,−1, −3, 2}; B = {−9, −3, 0, 6} and f(x) = 3 x.

So, f = {(0, 0), (-1, -3), (-3, -9), (2, 6)}

Here, differentelements of the domain have different images in the co-domain.

Clearly, this is one-one.

Range of f = Range of f = B

so, f is a bijection and,

Thus, f -1 exists.  

Hence, f -1= {(0, 0), (-3, -1), (-9, -3), (6, 2)}

(ii) Given A ={1, 3, 5, 7, 9}; B = {0, 1, 9, 25, 49, 81} and f(x) = x2

So, f = {(1, 1), (3, 9), (5, 25), (7, 49), (9, 81)}

Here, differentelements of the domain have different images in the co-domain.

Clearly, f is one-one.

But this is not onto because the element 0 in the co-domain (B) has nopre-image in the domain (A)

f is not abijection.

So, f -1does not exist.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×