MENU

Chapter 5 Continuity and Differentiability Ex 5.2 Solutions

Question - 1 : -

Differentiatethe functions with respect to x.-

Answer - 1 : - Let y = sin(x2 + 5),
put x² + 5 = t
y = sint
t = x²+5

_= cos (x² + 5) × 2x
_= 2x cos (x² + 5)

Question - 2 : -

Differentiatethe functions with respect to x.

Answer - 2 : -


Thus, isa composite function of two functions.

Put t = u (x)= sin x

By chain rule,


Alternate method

Question - 3 : -

Differentiatethe functions with respect to x.

Answer - 3 : -

Thus, isa composite function of two functions, u and v.

Put t = u (x) = ax + b

Hence, by chain rule, we obtain


Alternate method

Question - 4 : -

Differentiatethe functions with respect to x.

Answer - 4 : -

Thus, isa composite function of three functions, u, v, and w.

Hence, by chain rule, we obtain


Alternate method

Question - 5 : -

Differentiatethe functions with respect to x.

Answer - 5 : - The given function is,where g (x) = sin (ax + b) and
h (x) =cos (cx d)

 is a composite functionof two functions, u and v.

Therefore, by chain rule, we obtain

h is a composite function of twofunctions, p and q.

Put y = p (x)= cx d

Therefore, by chain rule, we obtain

Question - 6 : -

Differentiatethe functions with respect to x.

Answer - 6 : - The given function is

Question - 7 : -

Differentiatethe functions with respect to x.

Answer - 7 : -


Question - 8 : -

Differentiatethe functions with respect to x.

Answer - 8 : -

Clearly, isa composite function of two functions, and v,such that

By using chain rule, we obtain


Alternate method

Question - 9 : -

Provethat the function given by

 isnotdifferentiable at x = 1.

Answer - 9 : - The given function is 

It isknown that a function f is differentiable at a point x = c inits domain if both

are finite and equal.

Tocheck the differentiability of the given function at x = 1,

considerthe left hand limit of f at x = 1

Sincethe left and right hand limits of f at x = 1are not equal, f is not differentiable at x =1

Question - 10 : - Prove that the greatest integer function defined byis not

differentiableat x = 1 and x = 2.

Answer - 10 : - The given function f is

It isknown that a function f is differentiable at a point x = c inits domain if both.

are finite and equal.

Tocheck the differentiability of the given function at x = 1,consider the left hand limit of f at x = 1

Sincethe left and right hand limits of f at x = 1are not equal, f is not differentiable at

x = 1

Tocheck the differentiability of the given function at x = 2,consider the left hand limit

of f at x =2

Sincethe left and right hand limits of f at x = 2are not equal, f is not differentiable at x =2

Free - Previous Years Question Papers
Any questions? Ask us!
×