MENU

RD Chapter 18 Binomial Theorem Ex 18.2 Solutions

Question - 11 : - Does the expansion of (2x2 – 1/x) contain any term involving x9?

Answer - 11 : -

Given:

(2x2 –1/x)

If x9 occursat the (r + 1)th term in the given expression.

Then, we have:

Tr+1 = nCr xn-r ar

For this term tocontain x9, we must have

40 – 3r = 9

3r = 40 – 9

3r = 31

r = 31/3

It is not possible,since r is not an integer.

Hence, there is noterm with x9 in the given expansion.

Question - 12 : - Show that the expansion of (x2 + 1/x)12 does not contain any term involving x-1.

Answer - 12 : -

Given:

(x2 +1/x)12

If x-1 occursat the (r + 1)th term in the given expression.

Then, we have:

Tr+1 = nCr xn-r ar

For this term tocontain x-1, we must have

24 – 3r = -1

3r = 24 + 1

3r = 25

r = 25/3

It is not possible,since r is not an integer.

Hence, there is noterm with x-1 in the given expansion.

Question - 13 : -

Find the middle term in the expansion of:

(i) (2/3x – 3/2x)20

(ii) (a/x + bx)12

(iii) (x2 – 2/x)10

(iv) (x/a – a/x)10

Answer - 13 : -

(i) (2/3x – 3/2x)20

We have,

(2/3x – 3/2x)20 where,n = 20 (even number)

So the middle term is(n/2 + 1) = (20/2 + 1) = (10 + 1) = 11. ie., 11th term

Now,

T11 =T10+1

20C10 (2/3x)20-10 (3/2x)10

20C10 210/310 ×310/210 x10-10

20C10

Hence, the middle termis 20C10.

(ii) (a/x + bx)12

We have,

(a/x + bx)12 where,n = 12 (even number)

So the middle term is(n/2 + 1) = (12/2 + 1) = (6 + 1) = 7. ie., 7th term

Now,

T7 = T6+1

= 924 a6b6

Hence, the middle termis 924 a6b6.

(iii) (x2 –2/x)10

We have,

(x2 –2/x)10 where, n = 10 (even number)

So the middle term is(n/2 + 1) = (10/2 + 1) = (5 + 1) = 6. ie., 6th term

Now,

T6 = T5+1

Hence, the middle termis -8064x5.

(iv) (x/a – a/x)10

We have,

(x/a – a/x) 10 where,n = 10 (even number)

So the middle term is(n/2 + 1) = (10/2 + 1) = (5 + 1) = 6. ie., 6th term

Now,

T6 = T5+1

Hence, the middle termis -252.

Question - 14 : -

Find the middle terms in the expansion of:

(i) (3x – x3/6)9

(ii) (2x2 – 1/x)7

(iii) (3x – 2/x2)15

(iv) (x4 – 1/x3)11

Answer - 14 : -

(i) (3x – x3/6)9

We have,

(3x – x3/6)9 where,n = 9 (odd number)

So the middle termsare ((n+1)/2) = ((9+1)/2) = 10/2 = 5 and

((n+1)/2 + 1) =((9+1)/2 + 1) = (10/2 + 1) = (5 + 1) = 6

The terms are 5th and6th.

Now,

T5 = T4+1

Hence, the middle termare 189/8 x17 and -21/16 x19.

(ii) (2x2 –1/x)7

We have,

(2x2 –1/x)7 where, n = 7 (odd number)

So the middle termsare ((n+1)/2) = ((7+1)/2) = 8/2 = 4 and

((n+1)/2 + 1) =((7+1)/2 + 1) = (8/2 + 1) = (4 + 1) = 5

The terms are 4th and5th.

Now,

Hence, the middle termare -560x5 and 280x2.

(iii) (3x – 2/x2)15

We have,

(3x – 2/x2)15 where,n = 15 (odd number)

So the middle termsare ((n+1)/2) = ((15+1)/2) = 16/2 = 8 and

((n+1)/2 + 1) =((15+1)/2 + 1) = (16/2 + 1) = (8 + 1) = 9

The terms are 8th and9th.

Now,

Hence, the middle termare (-6435×38×27)/x6 and (6435×37×28)/x9.

(iv) (x4 –1/x3)11

We have,

(x4 –1/x3)11

where, n = 11 (oddnumber)

So the middle termsare ((n+1)/2) = ((11+1)/2) = 12/2 = 6 and

((n+1)/2 + 1) =((11+1)/2 + 1) = (12/2 + 1) = (6 + 1) = 7

The terms are 6th and7th.

Now,

T7 = T6+1

Hence, the middle termare -462x9 and 462x2.

Question - 15 : -

Find the middle terms in the expansion of:

(i) (x – 1/x)10

(ii) (1 – 2x + x2)n

(iii) (1 + 3x + 3x2 + x3)2n

(iv) (2x – x2/4)9

(v) (x – 1/x)2n+1

(vi) (x/3 + 9y)10

(vii) (3 – x3/6)7

(viii) (2ax – b/x2)12

(ix) (p/x + x/p)9

(x) (x/a – a/x)10

Answer - 15 : -

(i) (x – 1/x)10

We have,

(x – 1/x)10 where,n = 10 (even number)

So the middle term is(n/2 + 1) = (10/2 + 1) = (5 + 1) = 6. ie., 6th term

Now,

T6 = T5+1

Hence, the middle termis -252.

(ii) (1 – 2x + x2)n

We have,

(1 – 2x + x2)n =(1 – x)2n where, n is an even number.

So the middle term is(2n/2 + 1) = (n + 1)th term.

Now,

Tn = Tn+1

2nCn (-1)n (x)n

= (2n)!/(n!)2 (-1)n xn

Hence, the middle termis (2n)!/(n!)2 (-1)n xn.

(iii) (1 + 3x + 3x2 +x3)2n

We have,

(1 + 3x + 3x2 +x3)2n = (1 + x)6n where, n is aneven number.

So the middle term is(n/2 + 1) = (6n/2 + 1) = (3n + 1)th term.

Now,

T2n =T3n+1

6nC3n x3n

= (6n)!/(3n!)2 x3n

Hence, the middle termis (6n)!/(3n!)2 x3n.

(iv) (2x – x2/4)9

We have,

(2x – x2/4)9 where,n = 9 (odd number)

So the middle termsare ((n+1)/2) = ((9+1)/2) = 10/2 = 5 and

((n+1)/2 + 1) =((9+1)/2 + 1) = (10/2 + 1) = (5 + 1) = 6

The terms are 5th and6th.

Now,

T5 = T4+1

And,

T6 = T5+1

Hence, the middle termis 63/4 x13 and -63/32 x14.

(v) (x – 1/x)2n+1

We have,

(x – 1/x)2n+1 where,n = (2n + 1) is an (odd number)

So the middle termsare ((n+1)/2) = ((2n+1+1)/2) = (2n+2)/2 = (n + 1) and

((n+1)/2 + 1) =((2n+1+1)/2 + 1) = ((2n+2)/2 + 1) = (n + 1 + 1) = (n + 2)

The terms are (n + 1)th and(n + 2)th.

Now,

Tn = Tn+1

And,

Tn+2 =Tn+1+1

Hence, the middle termis (-1)n.2n+1Cn x and (-1)n+1.2n+1Cn (1/x).

(vi) (x/3 + 9y)10

We have,

(x/3 + 9y)10 where,n = 10 is an even number.

So the middle term is(n/2 + 1) = (10/2 + 1) = (5 + 1) = 6. i.e., 6th term.

Now,

T6 = T5+1

Hence, the middle termis 61236x5y5.

(vii) (3 – x3/6)7

We have,

(3 – x3/6)7 where,n = 7 (odd number).

So the middle termsare ((n+1)/2) = ((7+1)/2) = 8/2 = 4 and

((n+1)/2 + 1) =((7+1)/2 + 1) = (8/2 + 1) = (4 + 1) = 5

The terms are 4th and5th.

Now,

T4 = T3+1

7C3 (3)7-3 (-x3/6)3

= -105/8 x9

And,

T5 = T4+1

9C4 (3)9-4 (-x3/6)4

Hence, the middleterms are -105/8 x9 and 35/48 x12.

(viii) (2ax – b/x2)12

We have,

(2ax – b/x2)12 where,n = 12 is an even number.

So the middle term is(n/2 + 1) = (12/2 + 1) = (6 + 1) = 7. i.e., 7th term.

Now,

T7 = T6+1

Hence, the middle termis (59136a6b6)/x6.

(ix) (p/x + x/p)9

We have,

(p/x + x/p)9 where,n = 9 (odd number).

So the middle termsare ((n+1)/2) = ((9+1)/2) = 10/2 = 5 and

((n+1)/2 + 1) =((9+1)/2 + 1) = (10/2 + 1) = (5 + 1) = 6

The terms are 5th and6th.

Now,

T5 = T4+1

And,

T6 = T5+1

9C5 (p/x)9-5 (x/p)5

Hence, the middleterms are 126p/x and 126x/p.

(x) (x/a – a/x)10

We have,

(x/a – a/x) 10 where,n = 10 (even number)

So the middle term is(n/2 + 1) = (10/2 + 1) = (5 + 1) = 6. ie., 6th term

Now,

T6 = T5+1

Hence, the middle termis -252.

Question - 16 : -

Find the term independent of x in the expansion of the followingexpressions:

(i) (3/2 x2 – 1/3x)9

(ii) (2x + 1/3x2)9

(iii) (2x2 – 3/x3)25

(iv) (3x – 2/x2)15

(v) ((√x/3) + √3/2x2)10

(vi) (x – 1/x2)3n

(vii) (1/2 x1/3 + x-1/5)8

(viii) (1 + x + 2x3) (3/2x2 – 3/3x)9

(ix) (x + 1/2x)18, x> 0

(x) (3/2x2 – 1/3x)6

Answer - 16 : -

(i) (3/2 x2 –1/3x)9

Given:

(3/2 x2 –1/3x)9

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

18 – 3r = 0

3r = 18

r = 18/3

= 6

So, the required termis 7th term.

We have,

T7 = T6+1

9C6 ×(39-12)/(29-6)

= (9×8×7)/(3×2) × 3-3 ×2-3

= 7/18

Hence, the termindependent of x is 7/18.

(ii) (2x + 1/3x2)9

Given:

(2x + 1/3x2)9

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

9 – 3r = 0

3r = 9

r = 9/3

= 3

So, the required termis 4th term.

We have,

T4 = T3+1

9C3 ×(26)/(33)

9C3 ×64/27

Hence, the termindependent of x is 9C3 × 64/27.

(iii) (2x2 –3/x3)25

Given:

(2x2 –3/x3)25

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

25Cr (2x2)25-r (-3/x3)r

= (-1)r 25C×225-r × 3r x50-2r-3r

For this term to beindependent of x, we must have

50 – 5r = 0

5r = 50

r = 50/5

= 10

So, the required termis 11th term.

We have,

T11 =T10+1

= (-1)10 25C10 ×225-10 × 310

25C10 (215 ×310)

Hence, the termindependent of x is 25C10 (215 ×310).

(iv) (3x – 2/x2)15

Given:

(3x – 2/x2)15

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

15Cr (3x)15-r (-2/x2)r

= (-1)r 15Cr ×315-r × 2r x15-r-2r

For this term to beindependent of x, we must have

15 – 3r = 0

3r = 15

r = 15/3

= 5

So, the required termis 6th term.

We have,

T6 = T5+1

= (-1)5 15C5 ×315-5 × 25

= -3003 × 310 ×25

Hence, the termindependent of x is -3003 × 310 × 25.

(v) ((√x/3) + √3/2x2)10

Given:

((√x/3) + √3/2x2)10

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

(10-r)/2 – 2r = 0

10 – 5r = 0

5r = 10

r = 10/5

= 2

So, the required termis 3rd term.

We have,

T3 = T2+1

Hence, the termindependent of x is 5/4.

(vi) (x – 1/x2)3n

Given:

(x – 1/x2)3n

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

3nCr x3n-r (-1/x2)r

= (-1)r 3nCr x3n-r-2r

For this term to beindependent of x, we must have

3n – 3r = 0

r = n

So, the required termis (n+1)th term.

We have,

(-1)n 3nCn

Hence, the termindependent of x is (-1)n 3nCn

(vii) (1/2 x1/3 +x-1/5)8

Given:

(1/2 x1/3 +x-1/5)8

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

(8-r)/3 – r/5 = 0

(40 – 5r – 3r)/15 = 0

40 – 5r – 3r = 0

40 – 8r = 0

8r = 40

r = 40/8

= 5

So, the required termis 6th term.

We have,

T6 = T5+1

8C5 ×1/(28-5)

= (8×7×6)/(3×2×8)

= 7

Hence, the termindependent of x is 7.

(viii) (1 + x + 2x3)(3/2x2 – 3/3x)9

Given:

(1 + x + 2x3)(3/2x2 – 3/3x)9

If (r + 1)th termin the given expression is independent of x.

Then, we have:

(1 + x + 2x3)(3/2x2 – 3/3x)9 =

= 7/18 – 2/27

= (189 – 36)/486

= 153/486 (divide by9)

= 17/54

Hence, the termindependent of x is 17/54.

(ix) (x + 1/2x)18, x > 0

Given:

(x + 1/2x)18, x > 0

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of r, we must have

(18-r)/3 – r/3 = 0

(18 – r – r)/3 = 0

18 – 2r = 0

2r = 18

r = 18/2

= 9

So, the required termis 10th term.

We have,

T10 =T9+1

18C9 ×1/29

Hence, the termindependent of x is 18C9 × 1/29.

(x) (3/2x2 –1/3x)6

Given:

(3/2x2 –1/3x)6

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of r, we must have

12 – 3r = 0

3r = 12

r = 12/3

= 4

So, the required termis 5th term.

We have,

T5 = T4+1

Hence, the termindependent of x is 5/12.

Question - 17 : -

If the coefficients of (2r + 4)th and (r – 2)th terms in the expansion of(1 + x)18 are equal, find r.

Answer - 17 : -

Given:

(1 + x)18

We know, thecoefficient of the r term in the expansion of (1 + x)n is nCr-1

So, the coefficientsof the (2r + 4) and (r – 2) terms in the given expansion are 18C2r+4-1 and 18Cr-2-1

For these coefficientsto be equal, we must have

18C2r+4-1 = 18Cr-2-1

18C2r+3 = 18Cr-3

2r + 3 = r – 3 (or) 2r+ 3 + r – 3 = 18 [Since, nCr = nCs =>r = s (or) r + s = n]

2r – r = -3 – 3 (or)3r = 18 – 3 + 3

r = -6 (or) 3r = 18

r = -6 (or) r = 18/3

r = -6 (or) r = 6

r = 6 [since, rshould be a positive integer.]

Question - 18 : -

If the coefficients of (2r + 1)th term and (r + 2)th term inthe expansion of (1 + x)43 are equal, find r.

Answer - 18 : -

Given:

(1 + x)43

We know, thecoefficient of the r term in the expansion of (1 + x)n is nCr-1

So, the coefficientsof the (2r + 1) and (r + 2) terms in the given expansion are 43C2r+1-1 and 43Cr+2-1

For these coefficientsto be equal, we must have

43C2r+1-1 = 43Cr+2-1

43C2r = 43Cr+1

2r = r + 1 (or) 2r + r+ 1 = 43 [Since, nCr = nCs =>r = s (or) r + s = n]

2r – r = 1 (or) 3r + 1= 43

r = 1 (or) 3r = 43 – 1

r = 1 (or) 3r = 42

r = 1 (or) r = 42/3

r = 1 (or) r = 14

r = 14 [since, value‘1’ gives the same term]

Question - 19 : -

Prove that the coefficient of (r + 1)th term in the expansion of (1+ x)n + 1 is equal to the sum of the coefficientsof rth and (r + 1)th terms in the expansion of (1 + x)n.

Answer - 19 : -

We know, thecoefficients of (r + 1)th term in (1 + x)n+1 is n+1Cr

So, sum of thecoefficients of the rth and (r + 1)th terms in (1 + x)n is

(1 + x)n = nCr-1 + nCr

n+1Cr [since, nCr+1 + nCr = n+1Cr+1]

Hence proved.

Free - Previous Years Question Papers
Any questions? Ask us!
×