MENU
Question -

Find the term independent of x in the expansion of the followingexpressions:

(i) (3/2 x2 – 1/3x)9

(ii) (2x + 1/3x2)9

(iii) (2x2 – 3/x3)25

(iv) (3x – 2/x2)15

(v) ((√x/3) + √3/2x2)10

(vi) (x – 1/x2)3n

(vii) (1/2 x1/3 + x-1/5)8

(viii) (1 + x + 2x3) (3/2x2 – 3/3x)9

(ix) (x + 1/2x)18, x> 0

(x) (3/2x2 – 1/3x)6



Answer -

(i) (3/2 x2 –1/3x)9

Given:

(3/2 x2 –1/3x)9

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

18 – 3r = 0

3r = 18

r = 18/3

= 6

So, the required termis 7th term.

We have,

T7 = T6+1

9C6 ×(39-12)/(29-6)

= (9×8×7)/(3×2) × 3-3 ×2-3

= 7/18

Hence, the termindependent of x is 7/18.

(ii) (2x + 1/3x2)9

Given:

(2x + 1/3x2)9

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

9 – 3r = 0

3r = 9

r = 9/3

= 3

So, the required termis 4th term.

We have,

T4 = T3+1

9C3 ×(26)/(33)

9C3 ×64/27

Hence, the termindependent of x is 9C3 × 64/27.

(iii) (2x2 –3/x3)25

Given:

(2x2 –3/x3)25

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

25Cr (2x2)25-r (-3/x3)r

= (-1)r 25C×225-r × 3r x50-2r-3r

For this term to beindependent of x, we must have

50 – 5r = 0

5r = 50

r = 50/5

= 10

So, the required termis 11th term.

We have,

T11 =T10+1

= (-1)10 25C10 ×225-10 × 310

25C10 (215 ×310)

Hence, the termindependent of x is 25C10 (215 ×310).

(iv) (3x – 2/x2)15

Given:

(3x – 2/x2)15

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

15Cr (3x)15-r (-2/x2)r

= (-1)r 15Cr ×315-r × 2r x15-r-2r

For this term to beindependent of x, we must have

15 – 3r = 0

3r = 15

r = 15/3

= 5

So, the required termis 6th term.

We have,

T6 = T5+1

= (-1)5 15C5 ×315-5 × 25

= -3003 × 310 ×25

Hence, the termindependent of x is -3003 × 310 × 25.

(v) ((√x/3) + √3/2x2)10

Given:

((√x/3) + √3/2x2)10

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

(10-r)/2 – 2r = 0

10 – 5r = 0

5r = 10

r = 10/5

= 2

So, the required termis 3rd term.

We have,

T3 = T2+1

Hence, the termindependent of x is 5/4.

(vi) (x – 1/x2)3n

Given:

(x – 1/x2)3n

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

3nCr x3n-r (-1/x2)r

= (-1)r 3nCr x3n-r-2r

For this term to beindependent of x, we must have

3n – 3r = 0

r = n

So, the required termis (n+1)th term.

We have,

(-1)n 3nCn

Hence, the termindependent of x is (-1)n 3nCn

(vii) (1/2 x1/3 +x-1/5)8

Given:

(1/2 x1/3 +x-1/5)8

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of x, we must have

(8-r)/3 – r/5 = 0

(40 – 5r – 3r)/15 = 0

40 – 5r – 3r = 0

40 – 8r = 0

8r = 40

r = 40/8

= 5

So, the required termis 6th term.

We have,

T6 = T5+1

8C5 ×1/(28-5)

= (8×7×6)/(3×2×8)

= 7

Hence, the termindependent of x is 7.

(viii) (1 + x + 2x3)(3/2x2 – 3/3x)9

Given:

(1 + x + 2x3)(3/2x2 – 3/3x)9

If (r + 1)th termin the given expression is independent of x.

Then, we have:

(1 + x + 2x3)(3/2x2 – 3/3x)9 =

= 7/18 – 2/27

= (189 – 36)/486

= 153/486 (divide by9)

= 17/54

Hence, the termindependent of x is 17/54.

(ix) (x + 1/2x)18, x > 0

Given:

(x + 1/2x)18, x > 0

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of r, we must have

(18-r)/3 – r/3 = 0

(18 – r – r)/3 = 0

18 – 2r = 0

2r = 18

r = 18/2

= 9

So, the required termis 10th term.

We have,

T10 =T9+1

18C9 ×1/29

Hence, the termindependent of x is 18C9 × 1/29.

(x) (3/2x2 –1/3x)6

Given:

(3/2x2 –1/3x)6

If (r + 1)th termin the given expression is independent of x.

Then, we have:

Tr+1 = nCr xn-r ar

For this term to beindependent of r, we must have

12 – 3r = 0

3r = 12

r = 12/3

= 4

So, the required termis 5th term.

We have,

T5 = T4+1

Hence, the termindependent of x is 5/12.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×