MENU

Chapter 7 Integrals Ex 7.5 Solutions

Question - 1 : -

Answer - 1 : - Let 

Equating the coefficientsof x and constant term, we obtain

A + =1

2A + B =0

On solving, we obtain

A =−1 and B = 2

Question - 2 : -

Answer - 2 : - Let 

Equating the coefficientsof x and constant term, we obtain

A + B =0

−3A + 3B =1

Onsolving, we obtain

Question - 3 : -

Answer - 3 : - Let 

Substituting x =1, 2, and 3 respectively in equation (1), we obtain

A =1, B = −5, and C = 4

Question - 4 : -

Answer - 4 : - Let 

Substituting x = 1, 2, and 3respectively in equation (1), we obtain

Question - 5 : -

Answer - 5 : - Let 

Substituting x =−1 and −2 in equation (1), we obtain

A =−2 and B = 4

Question - 6 : -

Answer - 6 : -

It can be seen that thegiven integrand is not a proper fraction.

Therefore, on dividing (1− x2) by x(1 − 2x), we obtain

Let 

Substituting x = 0 and  in equation (1), weobtain

= 2 and B =3

Substituting in equation(1), we obtain


Question - 7 : -

Answer - 7 : - Let 

Equating the coefficientsof x2x, and constant term, we obtain

A + C =0

A + B =1

B + C =0

Onsolving these equations, we obtain

From equation (1), weobtain

Question - 8 : -

Answer - 8 : - Let 

Substituting x =1, we obtain

Equating the coefficientsof x2 and constant term, we obtain

A + C =0

−2A + 2B + C =0

On solving, we obtain

Question - 9 : -

Answer - 9 : -

Let 

Substituting x =1 in equation (1), we obtain

B = 4

Equating the coefficientsof x2 and x, we obtain

A + C =0

B − 2C =3

Onsolving, we obtain

Question - 10 : -

Answer - 10 : -

Let 

Equating the coefficientsof x2 and x, we obtain

Free - Previous Years Question Papers
Any questions? Ask us!
×