MENU

Chapter 7 Integrals Ex 7.5 Solutions

Question - 11 : -

Answer - 11 : -

Let 

Substituting =−1, −2, and 2 respectively in equation (1), we obtain

Question - 12 : -

Answer - 12 : -

It can be seen that thegiven integrand is not a proper fraction.

Therefore, on dividing (x3 + x +1) by x2 − 1, we obtain

Let 

Substituting =1 and −1 in equation (1), we obtain


Question - 13 : -

Answer - 13 : -

Equating the coefficientof x2x, and constant term, we obtain

A − B =0

B − C =0

A + C =2

On solving theseequations, we obtain

A =1, B = 1, and C = 1

Question - 14 : -

Answer - 14 : -

Equating the coefficientof x and constant term, we obtain

A = 3

2A + =−1  B =−7

Question - 15 : -

Answer - 15 : -

Equating the coefficientof x3x2, x, andconstant term, we obtain

On solving theseequations, we obtain

Question - 16 : -  [Hint: multiplynumerator and denominator by xn − 1 andput xn = t]

Answer - 16 : -

Multiplying numerator anddenominator by x− 1, we obtain

Substituting t =0, −1 in equation (1), we obtain

A = 1and B = −1


Question - 17 : - [Hint:Put sin x = t]                                        

Answer - 17 : -

Substituting t =2 and then t = 1 in equation (1), we obtain

A = 1and B = −1

Question - 18 : -

Answer - 18 : -

Equating the coefficientsof x3x2x, andconstant term, we obtain

A + C =0

B + D =4

4A + 3C =0

4B + 3D =10

On solving theseequations, we obtain

A =0, B = −2, C = 0, and D = 6

Question - 19 : -

Answer - 19 : -

Let x2 = t  2x dx = dt

Substituting =−3 and = −1 in equation (1), we obtain

Question - 20 : -

Answer - 20 : -

Multiplying numerator anddenominator by x3, we obtain

Let x4 = t  4x3dx = dt

Substituting t =0 and 1 in (1), we obtain

A =−1 and B = 1


Free - Previous Years Question Papers
Any questions? Ask us!
×