MENU
Question -

If (sin-1┬аx)2┬а+(cos-1┬аx)2┬а= 17 ╧А2/36, find x.



Answer -

Given (sin-1┬аx)2┬а+(cos-1┬аx)2┬а= 17 ╧А2/36

We know that cos-1┬аx+ sin-1┬аx = ╧А/2

Then cos-1┬аx= ╧А/2 тАУ sin-1┬аx

Substituting this in (sin-1┬аx)2┬а+(cos-1┬аx)2┬а= 17 ╧А2/36 we get

(sin-1┬аx)2┬а+(╧А/2 тАУ sin-1┬аx)2┬а= 17 ╧А2/36

Let y = sin-1┬аx

y2┬а+((╧А/2) тАУ y)2┬а= 17 ╧А2/36

y2┬а+ ╧А2/4тАУ y2┬атАУ 2y ((╧А/2) тАУ y) = 17 ╧А2/36

╧А2/4 тАУ ╧Аy +2 y2┬а= 17 ╧А2/36

On rearranging andsimplifying, we get

2y2┬атАУ╧Аy + 2/9 ╧А2┬а= 0

18y2┬атАУ9 ╧Аy + 2 ╧А2┬а= 0

18y2┬атАУ12 ╧Аy + 3 ╧Аy + 2 ╧А2┬а= 0

6y (3y тАУ 2╧А) + ╧А (3y тАУ2╧А) = 0

Now, (3y тАУ 2╧А) = 0 and(6y + ╧А) = 0

Therefore y = 2╧А/3 andy = тАУ ╧А/6

Now substituting y = тАУ╧А/6 in y = sin-1┬аx we get

sin-1┬аx= тАУ ╧А/6

x = sin (- ╧А/6)

x = -1/2

Now substituting y =-2╧А/3 in y = sin-1┬аx we get

x = sin (2╧А/3)

x = тИЪ3/2

Now substituting x =тИЪ3/2 in (sin-1┬аx)2┬а+ (cos-1┬аx)2┬а=17 ╧А2/36 we get,

= ╧А/3 + ╧А/6

= ╧А/2 which is notequal to 17 ╧А2/36

So we have to neglectthis root.

Now substituting x =-1/2 in (sin-1┬аx)2┬а+ (cos-1┬аx)2┬а=17 ╧А2/36 we get,

= ╧А2/36 + 4╧А2/9

= 17 ╧А2/36

Hence x = -1/2.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×