MENU
Question -

Let A = {a, b, c}, B = {u, v, w} and let f and g be two functions from A to B and from B to A, respectively, defined as: f = {(a, v), (b, u), (c, w)}, g = {(u, b), (v, a), (w, c)}.
Show that f and g both are bijections and find fog and gof.



Answer -

Given f ={(a, v), (b, u), (c, w)}, g = {(u, b),(v, a), (w, c)}.

Also given that A = {a, b, c}, B = {u, v, w}

Now we have to show fand g both are bijective.

Consider f ={(a, v), (b, u), (c, w)} and f: A → B

Injectivity of f: No two elements of A have the same image in B.

So, f is one-one.

Surjectivity of f: Co-domain of f = {u, v, w}

Range of f = {u, v, w}

Both are same.

So, f is onto.

Hence, f is a bijection.

Now consider g ={(u, b), (v, a), (w, c)} and g: B → A

Injectivity of g: No two elements of B  have the same imagein A.

So, g is one-one.

Surjectivity of g: Co-domain of g = {a, b, c}

Range of g = {a, b, c}

Both are the same.

So, g is onto.

Hence, g is a bijection.

Now we have to findfog,

we know that Co-domain of g is same as the domain of f.

So, fog exists and fog:{u v, w} → {u, v, w}

(fog) (u) = f (g (u)) = f (b) = u

(fog) (v) = f (g (v)) = f (a) = v

(fog) (w) = f (g (w)) = f (c) = w

So, fog = {(u, u), (v, v), (w, w)}

Now we have to findgof,

Co-domain of f is same as the domain of g.

So, fog exists and gof:{a, b, c} → {a, b, c}

(gof) (a) = g (f (a)) = g (v) = a

(gof) (b) = g (f (b)) = g (u) = b

(gof) (c) = g (f (c)) = g (w) = c

So, gof = {(a, a), (b, b), (c, c)}

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×