Chapter 8 d एवं f ब्लॉक के तत्त्व (The d and f Block Elements) Solutions
Question - 21 : - कारण देते हुए स्पष्ट कीजिए –
- संक्रमण धातुएँ तथा उनके अधिकांश यौगिक अनुचुम्बकीय हैं।
- संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं।
- संक्रमण धातुएँ सामान्यतः रंगीन यौगिक बनाती हैं।
- संक्रमण धातुएँ तथा इनके अनेक यौगिक उत्तम उत्प्रेरक का कार्य करते हैं।
Answer - 21 : -
1. पदार्थों में अनुचुम्बकत्व की उत्पत्ति, अयुग्मित इलेक्ट्रॉनों की उपस्थिति के कारण होती है। प्रतिचुम्बकीय पदार्थ वे होते हैं जिनमें सभी इलेक्ट्रॉन युग्मित होते हैं। संक्रमण धातु आयनों में प्रतिचुम्बकत्व तथा अनुचुम्बकत्व दोनों होते हैं अर्थात् इनमें दो विपरीत प्रभाव पाए जाते हैं, इसलिए परिकलित चुम्बकीय आघूर्ण इनका परिणामी चुम्बकीय आघूर्ण माना जाता है। d0 (Sc3+, Ti4+) या d10 (Cu+, Zn2+) विन्यासों को छोड़कर, संक्रमण धातुओं के सभी सरल आयनों में इनके (n – 1) d उपकोशों में अयुग्मित इलेक्ट्रॉन होते हैं; अत: ये अधिकांशत: अनुचुम्बकीय होते हैं। ऐसे अयुग्मित इलेक्ट्रॉन का चुम्बकीय आघूर्ण, प्रचक्रण कोणीय संवेग तथा कक्षीय कोणीय संवेग से सम्बन्धित होता है। प्रथम संक्रमण श्रेणी की धातुओं के यौगिकों में कक्षीय कोणीय संवेग को योगदान प्रभावी रूप से शमित (quench) हो जाता है, इसलिए इसका कोई महत्त्व नहीं रह जाता।
अत: इनके लिए चुम्बकीय आघूर्ण का निर्धारण उसमें उपस्थित अयुग्मित इलेक्ट्रॉनों की संख्या के आधार पर किया जाता है तथा इसकी गणना निम्नलिखित ‘प्रचक्रण मात्र’ सूत्र द्वारा की जाती है-
μ = यहाँ n अयुग्मित इलेक्ट्रॉनों की संख्या है तथा ॥ चुम्बकीय आघूर्ण है जिसका मात्रक बोर मैग्नेटॉन (BM) है। अतः एक अयुग्मित इलेक्ट्रॉन का चुम्बकीय आघूर्ण 1.73 BM होता है।2. संक्रमण धातुओं की कणन एन्थैल्पी के मान उच्च होते हैं क्योंकि इनके परमाणुओं में अयुग्मित इलेक्ट्रॉनों की संख्या अधिक होती है। इस कारण इनमें प्रबल अन्तरापरमाण्विक अन्योन्य-क्रियाएँ होती हैं। तथा इसलिए परमाणुओं के मध्य प्रबल आबन्ध उपस्थित होते हैं।
3. अधिकांश संक्रमण धातु आयन विलयन तथा ठोस अवस्थाओं में रंगीन होते हैं। ऐसा दृश्य प्रकाश के आंशिक अवशोषण के कारण होता है। अवशोषित प्रकाश इलेक्ट्रॉन को समान d-उपकोश के एक कक्षक से दूसरे कक्षक में उत्तेजित कर देता है। चूंकि इलेक्ट्रॉनिक संक्रमण धातु आयनों के d-कक्षकों में होते हैं, इसलिए ये d-d संक्रमण कहलाते हैं। संक्रमण धातु आयनों में दृश्य प्रकाश को अवशोषित करके होने वाले d-d संक्रमणों के कारण ही ये रंगीन दिखाई देते हैं।
4. संक्रमण धातुएँ तथा इनके यौगिक उत्प्रेरकीय सक्रियता के लिए जाने जाते हैं। संक्रमण धातुओं का यह गुण उनकी परिवर्तनशील संयोजकता एवं संकुल यौगिक के बनाने के गुण के कारण है। वैनेडियम (V) ऑक्साइड (संस्पर्श प्रक्रम में), सूक्ष्म विभाजित आयरन (हेबर प्रक्रम में) और निकिल (उत्प्रेरकीय हाइड्रोजनीकरण में) संक्रमण धातुओं के द्वारा उत्प्रेरण के कुछ उदाहरण हैं। उत्प्रेरक के ठोस पृष्ठ पर अभिकारक के अणुओं तथा उत्प्रेरक की सतह के परमाणुओं के बीच आबन्धों की रचना होती है। आबन्ध बनाने के लिए प्रथम संक्रमण श्रेणी की धातुएँ 3d एवं 4s इलेक्ट्रॉनों का उपयोग करती हैं, परिणामस्वरूप उत्प्रेरक की सतह पर अभिकारक की सान्द्रता में वृद्धि हो जाती है तथा अभिकारक के अणुओं में उपस्थित आबन्ध दुर्बल हो जाते हैं। इन कारण सक्रियण ऊर्जा का मान घटे जाता है। ऑक्सीकरण अवस्थाओं में परिवर्तन हो सकने के कारण संक्रमण धातुएँ उत्प्रेरक के रूप में अधिक प्रभावी होती हैं।
उदाहरणार्थ– आयरन (III), आयोडाइड आयन तथा परसल्फेट आयन के बीच सम्पन्न होने वाली अभिक्रिया को उत्प्रेरित करता है।
- 2I– + S2O2-8 → I2 ↑ + 2SO2-4
इस उत्प्रेरकीय अभिक्रिया का स्पष्टीकरण इस प्रकार है –
- 2Fe3+ + 2I– → 2Fe2+ +I2 ↑
- 2Fe2+ + S2O2-8 → 2Fe3+ + 2SO2-4
Question - 22 : - अन्तराकाशी यौगिक क्या हैं? इस प्रकार के यौगिक संक्रमण धातुओं के लिए भली प्रकार से ज्ञात क्यों हैं?
Answer - 22 : -
वे यौगिक जिनके क्रिस्टल जालक में अन्तराकाशी स्थलों को छोटे आकार वाले परमाणु अध्यासित कर लेते हैं, अन्तराकाशी यौगिक कहलाते हैं। अन्तराकाशी यौगिक संक्रमण धातुओं के लिए भली प्रकार से ज्ञात होते हैं क्योंकि संक्रमण धातुओं के क्रिस्टल जालकों में उपस्थित रिक्तियों (voids) में छोटे आकार वाले परमाणु; जैसे- H, N या C सरलता से सम्पाशित हो जाते हैं।
Question - 23 : - संक्रमण धातुओं की ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता असंक्रमण धातुओं में ऑक्सीकरण अवस्थाओं में परिवर्तनशीलता से किस प्रकार भिन्न है? उदाहरण देकर स्पष्ट कीजिए।
Answer - 23 : -
संक्रमण धातुओं में ऑक्सीकरण अवस्था +1 से एक के क्रमिक परिवर्तन से उच्च अवस्थाओं में परिवर्तित होती है। जैसे, मैंगनीज में यह +2, +3, +4, +5, +6, +7 पायी जाती है। असंक्रमण धातुओं में परिवर्तन चयनात्मक होता है तथा सामान्य रूप से 2 के अन्तर से परिवर्तित होता है, जैसे क्लोरीन में परिवर्तन क्रम -1, +1,+3, +5, +7 है।
Question - 24 : - आयरन क्रोमाइट अयस्क से पोटैशियम डाइक्रोमेट बनाने की विधि का वर्णन कीजिए। पोटैशियम डाइक्रोमेट विलयन पर pH बढ़ाने से क्या प्रभाव पड़ेगा?
Answer - 24 : -
पोटैशियम डाइक्रोमेट बनाने की विधि (Method ofPreparation of Potassium Dichromate) – आयरन क्रोमाइट अयस्क (FeCr2O4) को जब वायु की उपस्थिति में सोडियम यो पोटैशियम कार्बोनेट के साथ संगलित किया जाता है तो क्रोमेट प्राप्त होता है।
4FeCr2O4 + 8Na2CO3 + 7O2 →8Na2CrO4 +2Fe2O3 + 8CO2 ↑
सोडियम क्रोमेट के पीले विलयन को छानकर उसे सल्फ्यूरिक अम्ल द्वारा अम्लीय बना लिया जाता है। जिसमें से नारंगी सोडियम डाइक्रोमेट, Na2Cr2O7 . 2H2Oको क्रिस्टलित कर लिया जाता है।
2Na2CrO4 + 2H+ → Na2Cr2O7 +2Na+ + H2O
सोडियम डाइक्रोमेट की विलेयता, पोटैशियम डाइक्रोमेट से अधिक होती है, इसलिए सोडियम डाइक्रोमेट के विलयन में पोटैशियम क्लोराइड डालकर पोटैशियम डाइक्रोमेट प्राप्त कर लिया जाता है।
Na2Cr2O7 + 2KCl → K2Cr2O7 +2NaCl
पोटैशियम डाइक्रोमेट के नारंगी रंग के क्रिस्टल, क्रिस्टलीकृत हो जाते हैं। जलीय विलयन में क्रोमेट तथा डाइक्रोमेट का अन्तरारूपान्तरण होता है जो विलयन के pH पर निर्भर करता है। क्रोमेट तथा डाइक्रोमेट में क्रोमियम की ऑक्सीकरण संख्या समान है।
2CrO2-4 + 2H+ → Cr2O2-7 +H2O
Cr2O2-7 + 2OH– → 2CrO2-4 +H2O
अत: pH बढ़ाने पर, अर्थात् विलयन को क्षारीय करने पर, डाइक्रोमेट आयन (नारंगी रंग) क्रोमेट आयनों में परिवर्तित हो जाते हैं तथा विलयन का रंग पीला हो जाता है।
Question - 25 : - पोटैशियम डाइक्रोमेट की ऑक्सीकरण क्रिया का उल्लेख कीजिए तथा निम्नलिखित के साथ आयनिक समीकरण लिखिए-
- आयोडाइड आयन
- आयरन (II) विलयन
- H2S.
Answer - 25 : -
पोटैशियम डाइक्रोमेट प्रबल ऑक्सीकारक के रूप में कार्य करता है। इसका उपयोग आयतनमितीय विश्लेषण में प्राथमिक मानक के रूप में किया जाता है। अम्लीय माध्यम में डाइक्रोमेट आयन की ऑक्सीकरण क्रिया निम्नलिखित प्रकार से प्रदर्शित की जा सकती है –
Cr2O2-7 + 14H+ + 6e– →2Cr3+ + 7H2O (E– = 1: 33 V)
आयनिक अभिक्रियाएँ (IonicReactions)
- आयोडाइड आयन के साथ (With iodide ion) –
- Cr2O2-7 + 14H+ + 6I– → 2Cr3+ + 7H2O + 3I2 ↑
- आयरन (II) विलयन के साथ (With Iron (II) solution)
- Cr2O2-7 + 14H+ + 6Fe2+ → 2Cr3+ + 7H2O + 6Fe3+
- H2S के साथ (With H2S)
- Cr2O2-7 + 8H+ + 3H2S → 2Cr3+ + 7H2O + 3S ↓
Question - 26 : - पोटैशियम परमैंगनेट को बनाने की विधि का वर्णन कीजिए। अम्लीय पोटैशियम परमैंगनेट किस प्रकार
- आयरन (II) आयन,
- SO2 तथा
- ऑक्सैलिक अम्ल से अभिक्रिया करता है? अभिक्रियाओं के लिए आयनिक समीकरण लिखिए।
Answer - 26 : -
पोटैशियम परमैंगनेट,KMnO4 (Potassium Permanganate,KMnO4) बनाने की विधि (Method of Preparation) – पोटैशियम परमैंगनेट को निम्नलिखित विधियों से। बनाया जा सकता है –
1. पोटैशियम परमैंगनेट को प्राप्त करने के लिए MnO2 को क्षारीय धातु हाइड्रॉक्साइड तथा KNO3 जैसे ऑक्सीकारक के साथ संगलित किया जाता है। इससे गाढ़े हरे रंग का उत्पाद K2MnO4 प्राप्त होता है जो उदासीन या अम्लीय माध्यम में असमानुपातित होकर पोटैशियम परमैंगनेट देता है।
2MnO2 + 4KOH + O2 → 2K2MnO4 +2H2O
3MnO2-4 + 4H+ → 2MnO–4 +MnO2 + 2H2O
2. औद्योगिक स्तर पर इसका उत्पादन MnO2 के क्षारीय ऑक्सीकरणी संगलन के पश्चात् मैंगनेट (VI) के विद्युत-अपघटनी ऑक्सीकरण द्वारा किया जाता है।
3. प्रयोगशाला में मैंगनीज (II) आयन के लवण परऑक्सीडाइसल्फेट द्वारा ऑक्सीकृत होकर परमैंगनेट बनाते हैं।
2Mn2+ + 5S2O2-8 + 8H2O→ 2MnO–4 + 10SO2-4 + 16H+
रासायनिक अभिक्रियाएँ (ChemicalReactions)
अम्लीय पोटैशियम परमैंगनेट की रासायनिक अभिक्रियाएँ निम्नलिखित हैं –
- आयरन (II) आयन के साथ (With Iron (II) ion)
- MnO–4 + 8H+ + 5Fe2+ → Mn2+ + 4H2O + 5Fe3+
- SO2 के साथ (With SO2)
- 2MnO4 + 2H2O + 5SO2 → 2Mn2+ + 4H+ + 5SO2-4
- ऑक्सैलिक अम्ल के साथ (With oxalic acid)
Question - 27 : - M2+ | M तथा M3+ |M2+ निकाय के सन्दर्भ में कुछ धातुओं के E– के मान नीचे दिए गए हैं।
उपर्युक्त आँकड़ों के आधार पर निम्नलिखित पर टिप्पणी कीजिए –
- अम्लीय माध्यम में Cr3+ या Mn3+ की तुलना में Fe3+ का स्थायित्व।
- समान प्रक्रिया के लिए क्रोमियम अथवा मैंगनीज धातुओं की तुलना में आयरन के ऑक्सीकरण में सुगमता।
Answer - 27 : -
- Cr3+ / Cr2+ के लिए E का मान ऋणात्मक है। इसलिए Cr3+ स्थायी है तथा Cr2+ में अपचयित नहीं हो सकता है।
Mn3+ / Mn2+ के लिए E– का मान अधिक धनात्मक है, इसलिए Mn3+ बहुत स्थायी नहीं है तथा सरलता से Mn2+ में अपचयित हो सकता है। Fe3+ / Fe2+ के लिए E– का मान कम धनात्मक लेकिन छोटा है। इसलिए Fe3+, Mn3+ से अधिक स्थायी है। लेकिन यह Cr2+ से कम स्थायी है। - Fe, Cr तथा Mn के लिए ऑक्सीकरण विभव क्रमशः +0.4 V, + 0.9 V तथा +1.2 V है। इसलिए इनके ऑक्सीकरण की सुलभता का क्रम Mn > Cr > Fe होगा।
Question - 28 : - निम्नलिखित में कौन-से आयन जलीय विलयन में रंगीन होंगे?
Ti3+, V3+, Cu+, Sc3+, Mn2+,Fe3+ तथा Co2+ प्रत्येक के लिए कारण बताइए।
Answer - 28 : -
वे आयन रंगीन होते हैं जिनमें एक या अधिक अयुग्मित इलेक्ट्रॉन होते हैं। Ti3+, V3+, Mn2+,Fe3+ तथा Co2+ रंगीन होते हैं। Cu+ तथा Sc3+ रंगहीन होते हैं।
Question - 29 : - M2+ | M तथा M3+ | M2+ निकाय के सन्दर्भ में कुछ धातुओं के E– के मान नीचे दिए गए हैं।प्रथम संक्रमण श्रेणी की धातुओं की +2 ऑक्सीकरण अवस्थाओं के स्थायित्व की तुलना कीजिए।
Answer - 29 : -
प्रथमें संक्रमण श्रेणी के प्रथम अर्द्धभाग में बढ़ते हुए परमाणु क्रमांक के साथ प्रथम तथा द्वितीय आयनन एन्थैल्पियों का योग बढ़ता है। अत: मानक अपचायक विभव (E–) कम तथा ऋणात्मक होता है। इसलिए M2+ आयन बनाने की प्रवृत्ति घटती है। अत: +2 ऑक्सीकरण अवस्था प्रथम अर्द्ध-भाग में अधिक स्थायी होती है। +2 ऑक्सीकरण अवस्था का अधिक स्थायित्व, Mn2+ में अर्द्धपूरित d-उपकोशों (d5) के कारण, Zn2+ में पूर्णपूरित d-उपकोशों (d10) के कारण तथा निकिल में उच्च ऋणात्मक जलयोजन एन्थैल्पी के कारण होता है।
Question - 30 : - निम्नलिखित के सन्दर्भ में लैन्थेनाइड एवं ऐक्टिनाइड के रसायन की तुलना कीजिए –
1. इलेक्ट्रॉनिक विन्यास
2. परमाण्वीय एवं आयनिक आकार
3. ऑक्सीकरण अवस्था
4. रासायनिक अभिक्रियाशीलता।
Answer - 30 : -
1. इलेक्ट्रॉनिक विन्यास (Electronicconfiguration) – लैन्थेनाइडों का सामान्य इलेक्ट्रॉनिक विन्यास [Xe]54 4f1-14 5d0-1 6s2 होता है, जबकि ऐक्टिनाइडों का सामान्य इलेक्ट्रॉनिक विन्यास [Rn]86 5f1-14 6d1-2 7s2 होता है। अतः लैन्थेनाइड 4f श्रेणी से तथा ऐक्टिनाइड 5f श्रेणी से सम्बद्ध होते हैं।
2. परमाण्वीय एवं आयनिक आकार (Atomic and ionic sizes) – लैन्थेनाइड तथा ऐक्टिनाइड दोनों +3 ऑक्सीकरण अवस्था में अपने परमाणुओं अथवा आयनों के आकारों में कमी प्रदर्शित करते हैं। लैन्थेनाइडों में यह कमी लैन्थेनाइड आकुंचन कहलाती है, जबकि ऐक्टिनाइडों में यह ऐक्टिनाइड आकुंचन कहलाती है। यद्यपि ऐक्टिनाइडों में एक तत्व से दूसरे तत्व तक 5f-इलेक्ट्रॉनों द्वारा अत्यन्त कम परिरक्षण प्रभाव के कारण आकुंचन उत्तरोत्तर बढ़ता है।
3. ऑक्सीकरण अवस्था (Oxidation states) – लैन्थेनाइड सीमित ऑक्सीकरण अवस्थाएँ (+2, + 3, +4) प्रदर्शित करते हैं जिनमें +3 ऑक्सीकरण अवस्था सबसे अधिक सामान्य है। इसका कारण 4f, 5d तथा 6s उपकोशों के बीच अधिक ऊर्जा-अन्तर होना है। दूसरी ओर ऐक्टिंनाइड अधिक संख्या में ऑक्सीकरण अवस्थाएँ प्रदर्शित करते हैं क्योंकि 5f,6d तथा 7s उपकोशों में ऊर्जा-अन्तर कम होता है।
4. रासायनिक अभिक्रियाशीलता (Chemical reactivity) – लैन्थेनाइड (Lanthanides) सामान्य रूप से श्रेणी के आरम्भ वाले सदस्य अपने रासायनिक व्यवहार में कैल्सियम की तरह बहुत क्रियाशील होते हैं, परन्तु बढ़ते परमाणु क्रमांक के साथ ये ऐलुमिनियम की तरह व्यवहार करते हैं।
अर्द्ध- अभिक्रिया Ln3+ (aq)+ 3e– → Ln(s) के लिए E– का मान -2.2 V से -2.4 V के परास में है। Eu के लिए E– का मान -2.0 V है। निस्सन्देह मान में थोड़ा-सा परिवर्तन है। हाइड्रोजन गैस के वातावरण में मन्द गति से गर्म करने पर ये धातुएँ हाइड्रोजन से संयोग कर लेती हैं। इन धातुओं को कार्बन के साथ गर्म करने पर कार्बाइड- Ln3C, Ln2C3 तथा LnC2 बनते हैं। ये तनु अम्लों से हाइड्रोजन गैस मुक्त करती हैं तथा हैलोजेन के वातावरण में जलने पर हैलाइड बनाती हैं। ये ऑक्साइड M2O3 तथा हाइड्रॉक्साइड M(OH)3 बनाती हैं। हाइड्रॉक्साइड निश्चित यौगिक हैं न कि केवल हाइड्रेटेड (जलयोजित) ऑक्साइड। ये क्षारीय मृदा धातुओं के ऑक्साइड तथा हाइड्रॉक्साइड की भाँति क्षारकीय होते हैं। इनकी सामान्य अभिक्रियाएँ चित्र-3 में प्रदर्शित की गई हैं।
ऐक्टिनाइड (Actinides) – ऐक्टिनाइड अत्यधिक अभिक्रियाशील धातुएँ हैं, विशेषकर जब वे सूक्ष्मविभाजित हों। इन पर उबलते हुए जल की क्रिया से ऑक्साइड तथा हाइड्राइड का मिश्रण प्राप्त होता है और अधिकांश अधातुओं से संयोजन सामान्य ताप पर होता है। हाइड्रोक्लोरिक अम्ल सभी धातुओं को प्रभावित करता है, परन्तु अधिकतर धातुएँ नाइट्रिक अम्ल द्वारा अल्प प्रभावित होती हैं, इसका कारण यह है कि इन धातुओं पर ऑक्साइड की संरक्षी सतह बन जाती है। क्षारों का इन धातुओं पर कोई प्रभाव नहीं पड़ता।