MENU

Chapter 6 कार्य, ऊर्जा और शक्ति (Work Energy and Power) Solutions

Question - 21 : - किसी पवनचक्की के ब्लेड, क्षेत्रफल A के वृत्त जितना क्षेत्रफल प्रसर्प करते हैं।
(a) 
यदि हवा υ वेग से वृत्त के लम्बवत दिशा में बहती है तो t समय में इससे गुजरने वाली वायु का द्रव्यमाने क्या होगा?
(b) 
वायु की गतिज ऊर्जा क्या होगी?
(c) 
मान लीजिए कि पवनचक्की हवा की 25% ऊर्जा को विद्युत ऊर्जा में रूपान्तरित कर देती है। यदि A = 30 मी2 और υ = 36 किमी/घण्टा-1 और वायु का घनत्व 1 : 2 किग्रामी-3  है। तो उत्पन्न विद्युत शक्ति का परिकलन कीजिए।

Answer - 21 : -


Question - 22 : -
कोई व्यक्ति वजन कम करने के लिए 10 किग्रा द्रव्यमान को 0.5 मी की ऊँचाई तक 1000 बार उठाता है। मान लीजिए कि प्रत्येक बार द्रव्यमान को नीचे लाने में खोई हुई ऊर्जा क्षयित हो जाती है।
(a) वह गुरुत्वाकर्षण बल के विरुद्ध कितना कार्य करता है?
(b) यदि वसा 3.8 × 107 J ऊर्जा प्रति किलोग्राम आपूर्ति करता हो जो कि 20% दक्षता की दर से यान्त्रिक ऊर्जा में परिवर्तित हो जाती है तो वह कितनी वसा खर्च कर डालेगा

Answer - 22 : -


Question - 23 : -
कोई परिवार 8 kw विद्युत-शक्ति का उपभोग करता है।
(a) किसी क्षैतिज सतह पर सीधे आपतित होने वाली सौर ऊर्जा की औसत दर 200 w m-2 है। यदि इस ऊर्जा का 20% भाग लाभदायक विद्युत ऊर्जा में रूपान्तरित किया जा सकता है तो 8kw की विद्युत आपूर्ति के लिए कितने क्षेत्रफल की आवश्यकता होगी?
(b) इस क्षेत्रफल की तुलना किसी विशिष्ट भवन की छत के क्षेत्रफल से कीजिए।

Answer - 23 : -


Question - 24 : - 0.012 kg द्रव्यमान की कोई गोली 70 ms-1  की क्षैतिज चाल से चलते हुए 0.4 kg द्रव्यमान के लकड़ी के गुटके से टकराकर गुटके के सापेक्ष तुरन्त ही विरामावस्था में आ जाती है। गुटके को छत से पतली तारों द्वारा लटकाया गया है। परिकलन कीजिए कि गुटका किस ऊँचाई तक ऊपर उठता है? गुटके में पैदा हुई ऊष्मा की मात्रा का भी अनुमान लगाइए।

Answer - 24 : - गोली का द्रव्यमान, m= 0.012 किग्रा
गोली की प्रारम्भिक चाल µ = 70 मी से-1 तथा गुटके का द्रव्यमान M = 0.4 किग्रा
जब गोली गुटके से टकराकर गुटके के सापेक्ष विरामावस्था में जाती है तो इसका अर्थ है कि गोली गुटके में घुसकर रुक जाती है तथा (गोली + गुटका) निकाय (माना) एक साथ υ वेग से गति करके (माना) h ऊँचाई ऊपर उठ जाता है।
संवेग संरक्षण के सिद्धान्त से,
mu + M × 0 = (M + m) υ

Question - 25 : - दो घर्षणरहित आनत पथ, जिनमें से एक की ढाल अधिक है। और दूसरे की ढाल कम है, बिन्दु A पर मिलते हैं। बिन्दु A से प्रत्येक पथ पर एक-एक पत्थर को विरामावस्था से नीचे सरकाया जाता है (चित्र-6.7) क्या ये पत्थर एक ही समय 40 पर नीचे पहुँचेंगे? क्या वे वहाँ एक ही चाल से पहुँचेंगे? व्याख्या कीजिए। यदि θ1 = 30°, θ2, = 60° और h= 10 m दिया है तो दोनों पत्थरों की चाल एवं उनके द्वारा नीचे पहुँचने में लिए गए समय क्या हैं?

Answer - 25 : -


Question - 26 : - किसी रूक्ष आनत तल पर रखा हुआ 1 kg द्रव्यमान का गुटका किसी 100 N m-1 स्प्रिंग नियतांक वाले स्प्रिंग से दिए गए चित्र 6.8 के अनुसार जुड़ा है। गुटके को सिंप्रग की बिना खिंची। स्थिति में, विरामावस्था से छोड़ा जाता है। गुटका विरामावस्था में आने से पहले आनत तल पर 10 cm नीचे खिसक जाता है। गुटके और आनत तल चित्र 6.8 के मध्य घर्षण गुणांक ज्ञात कीजिए। मान लीजिए कि स्प्रिंग का द्रव्यमान उप्रेक्षणीय है और घिरनी घर्षणरहित है।

Answer - 26 : - यहाँ दिये गये गुटके पर कार्य करने वाले विभिन्न बल चित्र 6.9 में प्रदर्शित किये गये हैं। नत समतल के लम्बवत् पिण्ड की साम्यावस्था के लिए तल की गुटके पर अभिलम्ब प्रतिक्रिया

Question - 27 : - 0.3 kg द्रव्यमान का कोई बोल्ट 7 m s-1 की एकसमान चाल से नीचे आ रही किसी लिफ्ट की छत से गिरता है। यह लिफ्ट के फर्श से टकराता है (लिफ्ट की लम्बाई = 3m) और वापस नहीं लौटता है। टक्कर द्वारा कितनी ऊष्मा उत्पन्न हुई? यदि लिफ्ट स्थिर होती तो क्या आपको उत्तर इससे भिन्न होता?

Answer - 27 : -

जड़त्व के कारण बोल्ट की प्रारम्भिक चाल, लिफ्ट की चाल के बराबर है। अत: लिफ्ट के सापेक्ष बोल्ट की प्रारम्भिक चाल शून्य है। जब बोल्ट नीचे गिरता है, इसकी स्थितिज ऊर्जा गतिज ऊर्जा में बदलती है, जो अन्त में ऊष्मा में बदल जाती है।
∴ उत्पन्न ऊष्मा = mgh = 3 × 9.8 × 3 जूल = 8.82 जूल।
यदि लिफ्ट स्थिर होती तो भी बोल्ट की लिफ्ट के सापेक्ष चाल शून्य होती; इसलिए उत्तर अब भी वही रहेगा अर्थात् अब भी इस दशा में उत्पन्न ऊष्मा = 8.82 जूल।

Question - 28 : - 200 kg द्रव्यमान की कोई ट्रॉली किसी घर्षणरहित पथ पर 36 km h-1 की एकसमान चल से गतिमान है। 20 kg द्रव्यमान का कोई बच्चा ट्रॉली के एक सिरे से दूसरे सिरे तक (10 m दूर) ट्रॉली के सापेक्ष 4 m s-1 की चाल से ट्रॉली की गति की विपरीत दिशा में दौड़ता है। और ट्रॉली से बाहर कूद जाता है। ट्रॉली की अन्तिम चाल क्या है? बच्चे के दौड़ना आरम्भ करने के समय से ट्रॉली ने कितनी दूरी तय की ?

Answer - 28 : -


Question - 29 : - चित्र-6.10 में दिए गए स्थितिज ऊर्जा वक़ों में से कौन-सा वक्र सम्भवतः दो बिलियर्ड-गेंदों के प्रत्यास्थ संघट्ट का वर्णन नहीं करेगा? यहाँr गेंदों के केन्द्रों के मध्य की दूरी है और प्रत्येक गेंद का अर्धव्यास R है।

Answer - 29 : -

जब गेंदें संघट्ट करेंगी और एक-दूसरे को संपीडित करेंगी तो उनके केन्द्रों के बीच की दूरी r, 2R से घटती जाएगी और इनकी स्थितिज ऊर्जा बढ़ती जाएगी।
प्रत्यानयन काल में गेंदें अपने आकार को वापस पाने की क्रिया में एक-दूसरे से दूर हटेंगी तो उनकी स्थितिज ऊर्जा घटेगी और प्रारम्भिक आकार पूर्णतः प्राप्त कर लेने पर (r = 2R) स्थितिज ऊर्जा शून्य हो जाएगी।
केवल ग्राफ (V) की ही उपर्युक्त व्याख्या हो सकती है; अतः अन्य ग्राफों में से कोई भी बिलियर्ड गेंदों के प्रत्यास्थ संघट्ट को प्रदर्शित नहीं करता है।

Question - 30 : -
विरामावस्था में किसी मुक्त न्यूट्रॉन के क्षय पर विचार कीजिए n → p + e–
प्रदर्शित कीजिए कि इस प्रकार के द्विपिण्ड क्षय से नियत ऊर्जा का कोई इलेक्ट्रॉन अवश्य उत्सर्जित होना चाहिए, और इसलिए यह किसी न्यूट्रॉन या किसी नाभिक के β – क्ष्य में प्रेक्षित सतत ऊर्जा वितरण का स्पष्टीकरण नहीं दे सकता। (चित्र-6.11)
[नोट – इस अभ्यास का हल उन कई तर्कों में से एक है जिसे डब्ल्यु पॉली द्वारा β – क्षय के क्षय उत्पादों में किसी तीसरे कण के अस्तित्व का पूर्वानुमान करने के लिए दिया गया था। यह कण न्यूट्रिनो के नाम से जाना जाता है। अब हम जानते हैं कि यह निजी प्रचक्रण 1/2 (जैसे e–, p या n) का कोई कण है। लेकिन यह उदासीन है या द्रव्यमानरहित या इसका द्रव्यमान (इलेक्ट्रॉन के द्रव्यमान की तुलना में) अत्यधिक कम है और जो द्रव्य के साथ दुर्बलता से परस्पर क्रिया करता है। न्यूट्रॉन की उचित क्षय – प्रक्रिया इस प्रकार है : n → p + e– + v]

Answer - 30 : - चूँकि न्यूट्रॉन विरामावस्था में है; अत: उक्त अभिक्रिया के अनुसार न्यूट्रॉन क्षय में एक नियत ऊर्जा मुक्त होनी चाहिए और β – कण को उस नियत ऊर्जा के साथ नाभिक से उत्सर्जित होना चाहिए। इस प्रकार नाभिक से उत्सर्जित β – कण की ऊर्जा नियत होनी चाहिए, जबकि दिया गया ग्राफ यह प्रदर्शित करता है कि उत्सर्जित β – कण शून्य से लेकर एक महत्तम मान के बीच कोई भी ऊर्जा लेकर बाहर आ सकता है; अतः न्यूट्रॉन क्षय की उक्त अभिक्रिया ग्राफ द्वारा प्रदर्शित हु-कणों के सतत ऊर्जा वितरण की व्याख्या नहीं कर सकता।

Free - Previous Years Question Papers
Any questions? Ask us!
×