Chapter 3 सरल रेखा में गति (Motion in a Straight Line) Solutions
Question - 1 : - इस शताब्दी के एक महान भौतिकविद् (पी०ए०एम० डिरैक) प्रकृति के मूल स्थिरांकों (नियतांकों) के आंकिक मानों के साथ क्रीड़ा में आनन्द लेते थे। इससे उन्होंने एक बहुत ही रोचक प्रेक्षण किया। परमाणवीय भौतिकी के मूल नियतांकों (जैसे इलेक्ट्रॉन का द्रव्यमान, प्रोटॉन का द्रव्यमान तथा गुरुत्वीय नियतांक G) से उन्हें पता लगा कि वे एक ऐसी संख्या पर पहुँच गए हैं जिसकी विमा समय की विमा है। साथ ही, यह एक बहुत ही बड़ी संख्या थी और इसका परिमाण विश्व की वर्तमान आकलित आयु (~1500 करोड़ वर्ष) के करीब है। इस पुस्तक में दी गई मूल नियतांकों की सारणी के आधार पर यह देखने का प्रयास कीजिए कि क्या आप भी यह संख्या (या और कोई अन्य रोचक संख्या जिसे आप सोच सकते हैं) बना, सकते हैं? यदि विश्व की आयु तथा इस संख्या में समानता महत्त्वपूर्ण है तो मूल नियतांकों की स्थिरता किस प्रकार प्रभावित होगी?
Answer - 1 : -
(a) रेलगाड़ी दो स्टेशनों के बीच बिना झटके के चल रही है; अत: दोनों स्टेशनों के बीच की दूरी को रेलगाड़ी की लम्बाई की तुलना में अधिक माना जा सकता है। इसलिए रेलगाड़ी को बिन्दु वस्तु माना जाएगा।
(b) चूंकि बन्दर द्वारा यथोचित समय में तय की गई दूरी अधिक है; अत: बन्दर को बिन्दु वस्तु माना जाएगा।
(c) चूंकि गेंद का मुड़ना सरल नहीं है; अतः यथोचित समय में गेंद द्वारा तय की गई दूरी अधिक नहीं है। इसलिए गेंद को बिन्दु वस्तु नहीं माना जा सकत
(d) चूंकि बीकर मेज के किनारे से फिसलकर गिरता है; अतः यथोचित समय में इसके द्वारा तय की गई दूरी अधिक नहीं है। इसलिए इसे बिन्दु वस्तु नहीं माना जा सकता।
Question - 2 : - दो बच्चे A व B अपने विद्यालय से लौटकर अपने-अपने घर मे क्रमशः P तथा २ को जा रहे हैं। उनके स्थिति-समय (x-t) + ग्राफ चित्र-3.1 (a) में दिखाए गए हैं। नीचे लिखे कोष्ठकों में सही प्रविष्टियों को चुनिए(a) B/A की तुलना में A/B विद्यालय से निकट रहता है।
(b) B/A की तुलना में A/B विद्यालय से पहले चलता है।
(c) B/A की तुलना में A/B तेज चलता है।
(d) A और B घर (एक ही/भिन्न) समय पर पहुँचते हैं।
(e) A/B सड़क पर B/A से (एक बार/दो बार) आगे हो जाते हैं।
Answer - 2 : -
(a) B की तुलना में A विद्यालय से निकट रहता है, क्योंकि B अधिक दूरी तय करता है [OP
(b) B की तुलना में A विद्यालय से पहले चलता है, क्योंकि A के लिए गति प्रारम्भ का समय t = 0 है परन्तु B के गति प्रारम्भ के लिए समय हैं का निश्चित धनात्मक मान है।
(c) A की तुलना में B तेज चलता है, क्योकि B के ग्राफ का ढाल A के ग्राफ के ढाल से अधिक है।
(d) A और B घर भिन्न समय पर पहुँचते हैं।
(e) B सड़क और A से एक बार आगे हो जाता है (प्रतिच्छेद बिन्दु X के बाद)।
Question - 3 : - एक महिला अपने घर से प्रातः 9.00 बजे 2.5 km दूर अपने कार्यालय के लिए सीधी सड़क पर 5 kmh-1 चाल से चलती है। वहाँ वह सायं 5.00 बजे तक रहती है और 25 kmh-1 की चाल से चल रही किसी ऑटो रिक्शा द्वारा अपने घर लौट आती है। उपयुक्त पैमाना चुनिए तथा उसकी गति का x-t ग्राफ खींचिए।
Answer - 3 : - महिला द्वारा घर से कार्यालय तक पहुँचने में लिया गया समय,
Question - 4 : - कोई शराबी किसी तंग गली में 5 कदम आगे बढ़ता है और 3 कदम पीछे आता है, उसके बाद फिर 5 कदम आगे बढ़ता है और 3 कदम पीछे आता है, और इसी तरह वह चलता रहता है। उसका हर कदम 1m लम्बा है और 1s समय लगता है। उसकी गति का x-t ग्राफ खींचिए। ग्राफ से तथा किसी अन्य विधि से यह ज्ञात कीजिए कि वह जहाँ से चलना प्रारम्भ करता है वहाँ से 13 m दूर किसी गड्ढे में कितने समय पश्चात गिरता है?
Answer - 4 : - ग्राफ (चित्रे 3.3) से स्पष्ट है कि शराबी गति आरम्भ करने के स्थान से 13 किमी दूर गड्ढे में 37 सेकण्ड बाद गिरेगा। (∵13 मी के संगत ग्राफ से समय-अक्ष पर समय 37 सेकण्ड है।)
गणना:
प्रथम 8 कदम अर्थात् 8 सेकण्ड में शराबी का गत्यारम्भ के स्थान से विस्थापन अर्थात् उसके द्वारा तय नेट दूरी = (5 – 3) मी = 2 मी
इस प्रकार अगले 8 कदम तक (16 कदमों में) अर्थात्
16 सेकण्ड में नेट दूरी = (2+ 2) मी = 4 मी
24 कदमों में अर्थात् 24 सेकण्ड में नेट दूरी = (2+2+ 2) मी = 6 मी 32 कदमों में अर्थात् 32 सेकण्ड में नेट दूरी ।
= (2+2+ 2 + 2) मी = 8 मी
37 कदमों में अर्थात् 37 सेकण्ड में नेट दूरी = 8 मी + 5 मी = 13 मी
अतः गत्यारम्भ के स्थान से 13 मी दूर स्थित गड्ढे में गिरने में शराबी द्वारा लिया गया समय = 37 कदमों का समय = 37 सेकण्ड
Question - 5 : - कोई जेट वायुयान 500 kmh-1 की चाल से चल रहा है और यह जेट वायुयान के सापेक्ष 1500 kmh-1 की चाल से अपने दहन उत्पादों को बाहर निकालता है। जमीन पर खड़े किसी प्रेक्षक के सापेक्ष इन दहन उत्पादों की चाल क्या होगी?
Answer - 5 : -
जेट का वेग = νJ = – 500 kmh-1 (प्रेक्षक से दूर)
जेट के सापेक्ष दहन उत्पाद बाहर निकालने का आपेक्षिक वेग = νeJ = 1500 kmh-1
यदि बाहर निकलने वाले उत्पादों का वेग νe हो तो νeJ = νe – νJ
या
νe = νeJ +νJ = 1500+ (- 500) = 1000 km/h
Question - 6 : - सीधे राजमार्ग पर कोई कार126 kmh-1 की चाल से चल रही है। इसे 200 m की दूरी पर रोक दिया जाता है। कार के मन्दन को एकसमान मानिए और इसका मान निकालिए। कार को रुकने में कितना समय लगा?
Answer - 6 : - कार की प्रारम्भिक चाल, u = 126 किमी/घण्टा
Question - 7 : - दो रेलगाड़ियाँ A व B दो समान्तर पटरियों पर 72 kmh-1 की एकसमान चाल से एक ही दिशा में चल रही हैं। प्रत्येक गाड़ी 400 m लम्बी है और गाड़ी A गाड़ी B से आगे है। B का चालक A से आगे निकलना चाहता है तथा 1 ms-2 से इसे त्वरित करता है। यदि 50s के बाद B को गार्ड A के चालक से आगे हो जाता है तो दोनों के बीच आरम्भिक दूरी कितनी थी?
Answer - 7 : - रेलगाड़ियों की प्रारम्भिक तथा अन्तिम स्थितियाँ चित्र 3.4 में दिखायी गयी हैं।
प्रत्येक गाड़ी की प्रारम्भिक चाल (ν0) = 72 किमी/घण्टा = 20 मी/से
Question - 8 : - दो लेन वाली किसी सड़क पर कार A 36 kmh-1 की चाल से चल रही है। एक-दूसरे की विपरीत दिशाओं में चलती दो कारें B वा C जिनमें से प्रत्येक की चाल 54 kmh-1 है, कार A तक पहुँचना चाहती है। किसी क्षण जब दूरी AB दूरी AC के बराबर है तथा दोनों 1 km हैं, कार B का चालक यह निर्णय करता है कि कार C के कार A तक पहुँचने के पहले ही वह कार A से आगे निकल जाए। किसी दुर्घटना से बचने के लिए कार B का कितना न्यूनतम त्वरण जरूरी है?
Answer - 8 : -
कार A की चाल = (36 x 5/18) मी/से = 10 मी/से
कार B तथा कार C दोनों की चाल एकसमान है, अर्थात्,
Question - 9 : - दो नगर A व B नियमित बस सेवा द्वारा एक-दूसरे से जुड़े हैं और प्रत्येक मिनट के बाद दोनों तरफ बसें चलती हैं। कोई व्यक्ति साइकिल से 20 kmh-1 की चाल से A से B की तरफ जा रहा है और यह नोट करता है कि प्रत्येक 18 मिनट के बाद एक बस उसकी गति की दिशा में तथा प्रत्येक 6 मिनट बाद उसके विपरीत दिशा में गुजरती है। बस सेवाकाल T कितना है और बसें सड़क पर किस चाल (स्थिर मानिए) से चलती हैं?
Answer - 9 : -
माना νb = प्रत्येक बस की चाल
तथा νc = साइकिल-सवार की चाल
साइकिल सवार की गति की दिशा में चल रही बसों की आपेक्षिक चाल = νb – νc
साइकिल सवार की गति की दिशा में प्रत्येक 18 min या
h बाद एक बस गुजरती है।
Question - 10 : - कोई खिलाड़ी एक गेंद को ऊपर की ओर आरम्भिक चाल 29 ms-1 से फेंकता है,
(i) गेंद की ऊपर की ओर गति के दौरान त्वरण की दिशा क्या होगी?
(ii) इसकी गति के उच्चतम बिन्दु पर गेंद के वेग व त्वरण क्या होंगे?
(iii) गेंद के उच्चतम बिन्दु पर स्थान के समय को x= 0 व t = 0 चुनिए, ऊध्र्वाधर नीचे की ओर की दिशा को X-अक्ष की धनात्मक दिशा मानिए। गेंद की ऊपर की व नीचे की ओर
गति के दौरान स्थिति, वेग व त्वरण के चिह्न बताइए।
(iv) किस ऊँचाई तक गेंद ऊपर जाती है और कितनी देर के बाद गेंद खिलाड़ी के हाथों में आ . जाती है? [g = 9.8m s-2 तथा वायु का प्रतिरोध नगण्य है।]
Answer - 10 : -
(i) गेंद गुरुत्व के कारण त्वरण का प्रभाव अनुभव करती है जो सदैव ऊर्ध्वाधर नीचे की ओर कार्य करता है।
(ii) उच्चतम बिन्दु पर वेग = शून्य
उच्चतम बिन्दु पर त्वरण g = 9.8 m s-2 (ऊध्र्वाधर नीचे की ओर)
(iii) ऊपर की ओर गति के लिए,
(a) स्थिति धनात्मक
(b) वेग ऋणात्मक
(c) त्वरण धनात्मक
नीचे की ओर गति के लिए,
(a) स्थिति धनात्मक
(b) वेग धनात्मक
(c) त्वरण धनात्मक
(iv) ऊपर की ओर गति के दौरान,