Chapter 3 सरल रेखा में गति (Motion in a Straight Line) Solutions
Question - 11 : - नीचे दिए गए कथनों को ध्यान से पढिए और कारण बताते हुए व उदाहरण देते हुए बताइए कि वे सत्य हैं या असत्य, एकविमीय गति में किसी कण की
(a) किसी क्षण चाल शून्य होने पर भी उसका त्वरण अशून्य हो सकता है।
(b) चाल शून्य होने पर भी उसका वेग अशून्य हो सकता है।
(c) चाल स्थिर हो तो त्वरण अवश्य ही शून्य होना चाहिए।
(d) चाल अवश्य ही बंढती रहेगी, यदि उसका त्वरण धनात्मक हो।
Answer - 11 : -
(a) सत्य, सरल आवर्त गति करते कण की महत्तम विस्थापन की स्थिति में कण की चाल शून्य होती है, जबकि त्वरण महत्तम (अशून्य) होता है।
(b) असत्य, चाल शून्य होने का अर्थ है कि कण के वेग का परिमाण शून्य है।
(c) असत्य, एकसमाने वृत्तीय गति करते हुए कण की चाल स्थिर रहती है तो भी उसकी गति में। अभिकेन्द्र त्वरण कार्य करता है।
(d) असत्य, यह केवल जब सत्य हो सकता है जबकि चुनी गई धनात्मक दिशा गति की दिशा के अनुदिश हो।
Question - 12 : - किसी गेंद को 90 m की ऊँचाई से फर्श पर गिराया जाता है। फर्श के साथ प्रत्येक टक्कर में गेंद की चाल 1/10 कम हो जाती है। इसकी गति का t= 0 से 12s के बीच चाल-समय ग्राफ खींचिए।
Answer - 12 : -
Question - 13 : - उदाहरण सहित निम्नलिखित के बीच के अन्तर को स्पष्ट कीजिए
(a) किसी समय अन्तराल में विस्थापन के परिमाण (जिसे कभी-कभी दूरी भी कहा जाता है)। और किसी कण द्वारा उसी अन्तराल के दौरान तय किए गए पथ की कुल लम्बाई।
(b) किसी समय अन्तराल में औसत वेग के परिमाण और उसी अन्तराल में औसत चाल
(किसी समय अंतराल में किसी कण की औसत चाल को समय अन्तराल द्वारा विभाजित की गई कुल पथ-लम्बाई के रूप में परिभाषित किया जाता है। प्रदर्शित कीजिए कि (a) व (b) दोनों में ही दूसरी राशि-पहली से अधिक या उसके बराबर है। समता का | चिह्न कब सत्य होता है? (सरलता के लिए केवल एकविमीय गति पर विचार कीजिए।)
Answer - 13 : -
(a) विस्थापन के परिमाण का अर्थ है सीधी रेखा की कुल लम्बाई अर्थात् गति के प्रारम्भिक व अन्तिम बिन्दुओं के बीच की दूरी। कण द्वारा किसी समय अन्तराल में तय किए गए निश्चित पथ की कुल लम्बाई, उसी अन्तराल में गति के प्रारम्भिक व अन्तिम बिन्दुओं के बीच की दूरी भिन्न हो सकती है, जैसे चित्र-3.7 में A से B तक पहुँचने में पंथ
(1), दूरी अर्थात् पथ की लम्बाई को तथा पथ
(2) विस्थापन के परिमाण को प्रदर्शित करता है।
स्पष्ट है कि औसत चाल का मान औसत वेग के परिमाण से भिन्न है।
तथा औसत चाल का मान > औसत वेग को परिमाण
यदि A व B के बीच गति केवल पथ (2) पर हो तब औसत चाल =| औसत वेग ।
अतः स्पष्ट है कि प्रत्येक स्थिति में
| औसत चाल | ≥ | औसत वेगे ।
Question - 14 : - कोई व्यक्ति अपने घर से सीधी सड़क पर 5 kmh-1 की चाल से 2.5 km दूर बाजार तक पैदल जाता है। परन्तु बाजार बन्द देखकर वह उसी क्षण वापस मुड़ जाता है तथा 7.5 km h ! की चाल से घर लौट आता है। समय अन्तराल (i) 0-30 मिनट, (ii) 0-50 मिनट, (iii) 0-40 मिनट की अवधि में उस व्यक्ति (a) के माध्य वेग का परिमाण तथा (b) की माध्य चाल क्या है? (नोट—आप इस उदाहरण से समझ सकेंगे कि औसत चाल को औसत-वेग के परिमाण के रूप में परिभाषित करने की अपेक्षा समय द्वारा विभाजित कुल पथ-लम्बाई के रूप में परिभाषित करना अधिक अच्छा क्यों है? आप थककर घर लौटे उस व्यक्ति को यह बताना नहीं चाहेंगे कि उसकी औसत चाल शून्य थी।)
Answer - 14 : -
Question - 15 : - हमने अभ्यास प्रश्न 13तथा 14में औसत चाल व औसत वेग के परिमाण के बीच के अन्तर को स्पष्ट किया है। यदि हम तात्क्षणिक चाल व वेग के परिमाण पर विचार करते हैं तो इस तरह का अन्तर करना आवश्यक नहीं होता। तात्क्षणिक चाल हमेशा तात्क्षणिक वेग के बराबर होती है। क्यों?
Answer - 15 : - जब हम यादृच्छिक समय अन्तरालों पर विचार करते हैं, विस्थापन का परिमाण सदैव दूरी के परिमाण के तुल्य होता है। अन्य शब्दों में,
अत्यन्त लघु समय अन्तरालों (∆t → 0) में वस्तु की गंति की दिशा में कोई परिवर्तन नहीं माना जाता; अतः कुल पथ-लम्बाई (दूरी) तथा विस्थापन के परिमाण में कोई अन्तर नहीं होता। इस प्रकार तात्क्षणिक चाल सदैव तात्क्षणिक वेग के परिमाण के तुल्य होती है।
Question - 16 : - चित्र-8.8 में (a) से (d) तक के ग्राफों को ध्यान से देखिए और देखकर बताइए कि इनमें से कौन-सा ग्राफ एकविमीय गति को सम्भवतः नहीं दर्शा सकता?
Answer - 16 : -
(a) यह ग्राफ एकविमीय गति प्रदर्शित नहीं करता, चूंकि किसी एक क्षण पर कण की दो स्थितियाँ एकविमीय गति में सम्भव नहीं होतीं।
(b) यह ग्राफ एकविमीय गति प्रदर्शित नहीं करता, चूँकि किसी क्षण पर कण का वेग धनात्मक तथा ऋणात्मक दोनों दिशाओं में है, जो एकविमीय गति में सम्भव नहीं है।
(c) यह ग्रफ भी एकविमीय गति प्रदर्शित नहीं करता, चूँकि यह ग्राफ कण की ऋणात्मक चाल व्यक्त कर रहा है तथा कण की चाल ऋणात्मक नहीं हो सकती।
(d) यह ग्राफ भी एकविमीय गति प्रदर्शित नहीं करता, चूँकि यह प्रदर्शित कर रहा है कि कुल पथ की लम्बाई एक निश्चित समय के पश्चात् घट रही है, परन्तु गतिमान कण की कुल पथ-लम्बाई कभी भी समय के साथ नहीं घटती।।
Question - 17 : - चित्र 3:9 में किसी कण की एकविमीय गति का ग्राफ दिखाया गया है। ग्राफ से क्या यह कहना ठीक होगा कि यह कण है t<0 के लिए किसी सरल रेखा में और है t > 0 के लिए किसी परवलीय पथ में गति करता है। यदि नहीं, तो ग्राफ के संगत किसी उचित भौतिक सन्दर्भ का सुझाव दीजिए।
Answer - 17 : - यह कहना ठीक नहीं होगा कि यह कण है t<0 के लिए किसी सरल रेखा में और t > 0 के लिए किसी परवलीय पथ में गति करता है, चूँकि x-t ग्राफ कण का पथ प्रदर्शित नहीं कर सकता।
ग्राफ द्वारा t = 0 पर x= 0 प्रदर्शित है; अत: ग्राफ गुरुत्व के अन्तर्गत गिरती हुई किसी वस्तु की गति प्रदर्शित कर सकता है।
Question - 18 : - किसी राजमार्ग पर पुलिस की कोई गाड़ी 30 km/h की चाल से चल रही है और यह उसी दिशा में 192 km/h की चाल से जा रही किसी चोर की कार पर गोली चलाती है। यदि गोली की नाल मुखी चाल 150 ms-1 है तो चोर की कार को गोली किस चाल के साथ आघात करेगी?
(नोट-उस चाल को ज्ञात कीजिए जो चोर की कार को हानि पहुँचाने में प्रासंगिक हो।)
Answer - 18 : -
चोर की कार की चाल νt = 192
किमी/घण्टा = (192 x 5/18)
मी/से = (160/3) मी/से
पुलिस की कार की चाल νp = 30
किमी/घण्टा = (30×5/18)
मी/से = (25/3) मी/से
पुलिस की कार (चाल) के सापेक्ष गोली की चाल, νbp = 150 मी/से
पुलिस की कार के सापेक्ष चोर की कार की आपेक्षिक चाल

चोर की कार से गोली के टकराने की चाल = पुलिस की कार के सापेक्ष गोली की आपेक्षिक चाल – पुलिस की कार के सापेक्ष चोर की कार की चाल = vbp – vtp
= 150 मी/से – 45 मी/से = 105 मी/से
Question - 19 : - चित्र 3.10 में दिखाए गए प्रत्येक ग्राफ के लिए किसी उचित भौतिक स्थिति का सुझाव दीजिए
Answer - 19 : -
(a) x-t ग्राफ प्रदर्शित कर रहा है कि प्रारम्भ में x शून्य है, फिर यह एक स्थिर मान प्राप्त करता है, पुनः यह शून्य हो जाता है तथा फिर यह विपरीत दिशा में बढ़कर अन्त में एक स्थिर मान (विरामावस्था) प्राप्त कर लेता है। अतः यह ग्राफ इस प्रकार की भौतिक स्थिति व्यक्त कर सकता है जैसे एक गेंद को विरामावस्था से फेंका जाता है और वह दीवार से टकराकर लौटती है तथा कम चाल से उछलती है तथा यह क्रम इसके विराम में पहुँचने तक चलता रहता है।
(b) यह ग्राफ प्रदर्शित कर रहा है कि वेग समय के प्रत्येक अन्तराल के साथ परिवर्तित हो रहा है तथा प्रत्येक बार इसका वेग कम हो रहा है। इसलिए यह ग्राफ एक ऐसी भौतिक स्थिति को व्यक्त कर सकता है जिसमें एक स्वतन्त्रतापूर्वक गिरती हुई गेंद (फेंके जाने पर) धरती से टकराकर कम चाल से पुनः उछलती है तथा प्रत्येक बार धरती से टकराने पर इसकी चाल कम होती जाती है।
(c) यह ग्राफ प्रदर्शित करता है कि वस्तु अल्प समय में ही त्वरित हो जाती है। अत: यह ग्राफ एक ऐसी भौतिक स्थिति को व्यक्त कर सकता है जिसमें एकसमान चाल से चलती हुई गेंद को अत्यल्प समयान्तराल में बल्ले द्वारा टकराया जाता है।
Question - 20 : - चित्र 3.11 में किसी कण की एकविमीय सरल आवर्ती गति के लिए x-t ग्राफ दिखाया गया है। (इस गति के बारे में आप अध्याय 14 में पढ़ेंगे) समय t = 0.3 s, 1.2 s, – 1.2s पर कण के स्थिति, वेग व त्वरण के चिह्न क्या होंगे?
Answer - 20 : -
सरल आवर्ती गति में, त्वरण, α= -ω2x जहाँ ω नियतांक (कोणीय आवृत्ति) है।
समय t = 0.3s पर, x ऋणात्मक है, x-t ग्राफ का ढाल ऋणात्मक है; अतः स्थिति एवं वेग ऋणात्मक हैं। चूंकि α = -ω2x);
अत: त्वरण धनात्मक है। समय t = 1.2 s पर, x धनात्मक है, x-t ग्राफ का ढाल भी धनात्मक है; अतः स्थिति एवं वेग धनात्मक हैं। चूंकि α = ω2x; अतः त्वरण ऋणात्मक है।
समय t = -1.2s पर, x ऋणात्मक है, x-t ग्राफ का ढाल भी धनात्मक है; अतः वेग धनात्मक है। अन्त में त्वरण ‘α’ भी धनात्मक है।