MENU

Rd Chapter 9 Arithmetic Progressions Ex 9.6 Solutions

Question - 61 : - In a school, students decided to plant trees in and around the school to reduce air pollution. It was decided that the number of trees, that each section of each class will plant, will be double of the class in which they are studying. If there are 1 to 12 classes in the school and each class has two sections, find how many trees were planted by the students. [CBSE 2014]

Answer - 61 : -


Question - 62 : - Ramkali would need ₹ 1800 for admission fee and books etc., for her daughter to start going to school from next year. She saved ₹ 50 in the first month of this year and increased her monthly saving by ₹ 20. After a year, how much money will she save? Will she be able to fulfill her dream of sending her daughter to school? [CBSE 2014]

Answer - 62 : -

Admission fee andbooks etc. = ₹ 1800
First month’s savings = ₹ 50
Increase in monthly savings = ₹ 720
Period = 1 year = 12 months
Here a = 50, d = 20 and n = 12
S12 = 
n/2 [2a + (n – 1) d]
= (
12/2) [2 x 50 + (12 –1) x 20]
= 6[100 + 11 x 20]
= 6[100 + 220]
= 6 x 320 = ₹ 1920
Savings = ₹ 1920
Yes, she will be able to send her daughter.

Question - 63 : - A man saved ₹ 16500 in ten years. In each year after the first he saved ₹ 100 more than he did in the preceding year. How much did he save in the first year ?

Answer - 63 : -

Savings in 10 years =₹ 16500
S10 = ₹ 16500 and d = 7100
Sn = 
n/2 [2a + (n – 1)d]
16500= 
10/2 [2 x a + (10 –1) x 100]
16500 = 5 (2a + 900)
16500 = 10a + 4500
=> 10a = 16500 – 4500 = 12000
a = 1200
Saving for the first year = ₹ 1200

Question - 64 : - A man saved ₹ 32 during the first year, ₹ 36 in the second year and in this way he increases his savings by ₹ 4 every year. Find in what time his saving will be ₹ 200.

Answer - 64 : -

Savings for the first year = ₹ 32
For the second year = ₹ 36

Question - 65 : - A man arranges to pay off a debt of ₹ 3600 by 40 annual installments which form an arithmetic series. When 30 of the installments are paid, he dies leaving one – third of the debt unpaid, find the value of the first installment.

Answer - 65 : -


Question - 66 : - There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.

Answer - 66 : -

Number of trees = 25
 
Distance between one to other tree = 5 m
Distance between first near and the well = 10 m
Now in order to water the first tree, the gardener has to cover 10m + 10m = 20m
and to water the second tree, the distance to covered is 15 + 15 = 30 m
To water the third tree, the distance to cover is = 20 + 20 = 40 m
The series will be 20, 30, 40, ……….
where a = 20, d = 30 – 20 = 10 and n = 25

Question - 67 : - A man is employed to count ₹ 10710. He counts at the rate of ₹ 180 per minute for half an hour. After this he counts at the rate of ₹ 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.

Answer - 67 : -


=> (n – 59) (n – 60) = 0
Either n – 59 = 0, then n – 59 or n – 60 = 0, then n = 60
Total time = 59 + 30 = 89 minutes or = 60 + 30 = 90 minutes

Question - 68 : - A piece of equipment cost a certain factory ₹ 600,000. If it depreciates in value, 15% the first, 13.5% the next year, 12% the third year, and so on. What will be its value at the end of 10 years, all percentages applying to the original cost ?

Answer - 68 : -

Cost of a piece of equipment = ₹ 600,000
Rate of depreciation for the first year = 15%
for the second year = 13.5%
for the third year = 12.0% and so on
The depreciation is in A.P.
whose first term (a) = 15
and common difference (d) = 13.5 – 15.0 = -1.5
Period (n) = 10

Question - 69 : - A sum of ₹ 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is ₹ 20 less than its preceding prize, find the value of each prize.

Answer - 69 : - Total sum = ₹ 700

Question - 70 : - If Sn denotes the sum of the first n terms of an A.P.,prove that S30 = 3 (S20 – S10). 

Answer - 70 : -


Free - Previous Years Question Papers
Any questions? Ask us!
×