MENU

Chapter 8 Binomial Theorem Ex 8.2 Solutions

Question - 11 : -

Prove that the coefficientof xn in the expansion of (1 + x)2n istwice the coefficient of xn in the expansion of (1+ x)2n–1 .

Answer - 11 : -

It is known that (+1)th term, (Tr+1), in the binomialexpansion of (b)n is givenby .

Assuming that xn occursin the (r + 1)th term of the expansion of (1+ x)2n, we obtain

Comparing the indices of x in xn andin Tr + 1, we obtain

r = n

Therefore, the coefficient of xn inthe expansion of (1 + x)2n is

Assuming that xn occursin the (k +1)th term of the expansion (1 + x)2–1, we obtain

Comparing the indices of x in xn and Tk +1, we obtain

k = n

Therefore, the coefficient of xn inthe expansion of (1 + x)2–1 is

From (1) and (2), it is observedthat

Therefore, the coefficientof xn in the expansion of (1 + x)2n istwice the coefficient of xn in the expansion of (1+ x)2n–1.

Hence, proved.

Question - 12 : -

Find a positive value of m forwhich the coefficient of x2 in the expansion

(1 + x)m is6.

Answer - 12 : -

It is known that (+1)th term, (Tr+1), in the binomialexpansion of (b)n is givenby .

Assuming that x2 occursin the (+ 1)th term of the expansion (1 +x)m,we obtain

Comparing the indices of x in x2 andin Tr + 1, we obtain

r = 2

Therefore, the coefficientof x2 is .

It is given that the coefficientof x2 in the expansion (1 + x)m is6.

Thus, the positive value of m,for which the coefficient of x2 in the expansion

(1 + x)m is6, is 4.

Free - Previous Years Question Papers
Any questions? Ask us!
×