MENU

RD Chapter 7 Adjoint and Inverse of a Matrix Ex 7.1 Solutions

Question - 11 : -

Answer - 11 : -

Given

Question - 12 : -

Answer - 12 : -

Given

Question - 13 : -

Answer - 13 : -

Given

Question - 14 : -

Answer - 14 : -


Question - 15 : -

Answer - 15 : -

Given

A = 
andB – 1 = 

Here, (AB) – 1 = B – 1 A –1

|A| = – 5 + 4 = – 1

Cofactors of A are

C11 = – 1

C21 = 8

C31 = – 12

C12 = 0

C22 = 1

C32 = – 2

C13 = 1

C23 = – 10

C33 = 15

Question - 16 : -

(i) [F (α)]-1 =F (-α)

(ii) [G(β)]-1 = G (-β)

(iii) [F(α) G (β)]-1 = G (-β) F (-α)

Answer - 16 : -

(i) Given

F (α) = 

|F (α)| = cos2 α + sin2 α= 1≠ 0

Cofactors of A are

C11 = cos α

C21 = sin α

C31 = 0

C12 = – sin α

C22 = cos α

C32 = 0

C13 = 0

C23 = 0

C33 = 1

(ii) We have

|G (β)| = cos2 β + sin2 β =1

Cofactors of A are

C11 = cos β

C21 = 0

C31 = -sin β

C12 = 0

C22 = 1

C32 = 0

C13 = sin β

C23 = 0

C33 = cos β

(iii) Now we have to show that

[F (α) G(β)] – 1 = G (– β) F (– α)

We have already know that

[G(β)] – 1 = G (– β)

[F(α)] – 1 = F (– α)

And LHS = [F (α) G (β)] – 1

= [G (β)] – 1 [F (α)] –1

= G (– β) F (– α)

Hence = RHS

Question - 17 : -

Answer - 17 : -

Consider,

Question - 18 : -

Answer - 18 : -

Given

Question - 19 : -

Answer - 19 : - Given

Question - 20 : -

Answer - 20 : -


Free - Previous Years Question Papers
Any questions? Ask us!
×