MENU

Chapter 5 Continuity and Differentiability Ex 5.1 Solutions

Question - 21 : -

Discuss the continuity of the followingfunctions.

(a) f (x)= sin x + cos x

(b) f (x)= sin x − cos x

(c) f (x)= sin x × cos x

Answer - 21 : -

It isknown that if and are two continuousfunctions, then

are also continuous.

Ithas to proved first that g (x) = sin and h (x)= cos x are continuous functions.

Let (x)= sin x

It isevident that g (x) = sin x is definedfor every real number.

Let bea real number. Put x = c + h

If x → c,then h → 0

Therefore, g isa continuous function.

Let h (x)= cos x

It isevident that h (x) = cos x is definedfor every real number.

Let bea real number. Put x = c + h

If x → c,then h → 0

(c) =cos c

Therefore, h isa continuous function.

Therefore, it can be concluded that

(a) f (x)= g (x) + h (x) = sin x +cos x is a continuous function

(b) f (x)= g (x) − h (x) = sin x −cos x is a continuous function

(c) f (x)= g (x) × h (x) = sin x ×cos x is a continuous function

Question - 22 : -

Discuss thecontinuity of the cosine, cosecant, secant and cotangent functions,

Answer - 22 : -

It isknown that if and are two continuousfunctions, then

Ithas to be proved first that g (x) = sin and h (x)= cos x are continuous functions.

Let (x)= sin x

It isevident that g (x) = sin x is definedfor every real number.

Let bea real number. Put x = c + h

If x

 c, then h

0

Therefore, g isa continuous function.

Let h (x)= cos x

It isevident that h (x) = cos x is definedfor every real number.

Let bea real number. Put x = c + h

If x ® c,then h ® 0

(c) =cos c

Therefore, h (x)= cos x is continuous function.

It can be concludedthat,

Therefore, cosecant is continuous except at np, Z

Therefore, secant is continuous except at 

Therefore,cotangent is continuous except at np, Î Z

Question - 23 : -

Findthe points of discontinuity of f, where

Answer - 23 : - The given function f is

It isevident that f is defined at all points of the real line.

Let c bea real number.

Case I:

Therefore, f iscontinuous at all points x, such that x < 0

Case II:

Therefore, f iscontinuous at all points x, such that x > 0

Case III:

Theleft hand limit of f at x = 0 is,

Theright hand limit of f at x = 0 is,

Therefore, f iscontinuous at x = 0

Fromthe above observations, it can be concluded that f iscontinuous at all points of the real line.

Thus, f hasno point of discontinuity.

Question - 24 : -

Determineif f defined by

is a continuousfunction?

Answer - 24 : - The given function f is

It isevident that f is defined at all points of the real line.

Let c bea real number.

Case I:

Therefore, f iscontinuous at all points ≠ 0

Case II:

Therefore, f iscontinuous at x = 0

Fromthe above observations, it can be concluded that f is continuousat every point of the real line.

Thus, f isa continuous function.

Question - 25 : -

Examinethe continuity of f, where f is defined by

Answer - 25 : - The given function f is

It isevident that f is defined at all points of the real line.

Let c bea real number.

Case I:

Therefore, f iscontinuous at all points x, such that x ≠ 0

Case II:

Therefore, f iscontinuous at x = 0

Fromthe above observations, it can be concluded that f iscontinuous at every point of the real line.

Thus, f isa continuous function.


Question - 26 : -

Find the values of so that the function f is continuous at the indicated point.

Answer - 26 : - The given function f is

The given function f is continuous at, if f is defined at and if the value of the f at equals the limit of f at 
It is evidentthat is defined at  and 

Therefore,the required value of k is 6.

Question - 27 : -

Findthe values of so that the function f iscontinuous at the indicated point.

Answer - 27 : - The given function is

Thegiven function f is continuous at x = 2,if f is defined at x = 2 and if the valueof f at x = 2 equals the limit of f at x =2

It is evidentthat is defined at x = 2 and
Therefore, the required value of 

Question - 28 : -

Findthe values of so that the function f iscontinuous at the indicated point.

Answer - 28 : - The given function is

Thegiven function f is continuous at x = p,if f is defined at x = p and if the valueof f at x = p equals the limit of f at x =p

It is evidentthat is defined at x = p and
Therefore, the required value of

Question - 29 : -

Findthe values of so that the function f iscontinuous at the indicated point.

Answer - 29 : - The given function is

Thegiven function f is continuous at x = 5,if f is defined at x = 5 and if the valueof f at x = 5 equals the limit of f at x =5

It is evidentthat is defined at x = 5 and
Therefore, the required value of

Question - 30 : -

Findthe values of a and b such that the functiondefined by

is a continuousfunction.

Answer - 30 : - The given function is

It isevident that the given function f is defined at all points ofthe real line.

If f isa continuous function, then f is continuous at all realnumbers.

Inparticular, f is continuous at = 2and = 10

Since f iscontinuous at = 2, we obtain

Since f iscontinuous at = 10, we obtain

On subtracting equation (1) from equation(2), we obtain

8a =16

 a = 2

Byputting a = 2 in equation (1), we obtain

2 × 2+ b = 5

4 + b = 5

 b = 1

Therefore,the values of a and b for which f isa continuous function are 2 and 1 respectively.

Free - Previous Years Question Papers
Any questions? Ask us!
×