MENU

Chapter 5 Continuity and Differentiability Ex 5.1 Solutions

Question - 11 : -

Find allpoints of discontinuity of f, where f is definedby

Answer - 11 : - The given function f is

Thegiven function f is defined at all the points of the realline.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < 2

Case II:

Therefore, f iscontinuous at x = 2

Case III:

Therefore, f iscontinuous at all points x, such that x > 2

Thus,the given function f is continuous at every point on the realline.

Hence, hasno point of discontinuity.

Question - 12 : -

Findall points of discontinuity of f, where f isdefined by

Answer - 12 : - The given function f is  

Thegiven function f is defined at all the points of the realline.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < 1

Case II:

If c =1, then the left hand limit of f at x = 1 is,

Theright hand limit of f at = 1 is,

It isobserved that the left and right hand limit of f at x =1 do not coincide.

Therefore, f isnot continuous at x = 1

Case III:

Therefore, f iscontinuous at all points x, such that x > 1

Thus,from the above observation, it can be concluded that x = 1 isthe only point of discontinuity of f.

Question - 13 : -

Is the function defined by

a continuousfunction?

Answer - 13 : - The given function is

Thegiven function f is defined at all the points of the realline.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < 1

Case II:

Theleft hand limit of at x = 1 is,

Theright hand limit of f at = 1 is,

It isobserved that the left and right hand limit of f at x =1 do not coincide.

Therefore, f isnot continuous at x = 1

Case III:

Therefore, f iscontinuous at all points x, such that x > 1

Thus,from the above observation, it can be concluded that x = 1 isthe only point of discontinuity of f.

Question - 14 : -

Discussthe continuity of the function f, where f isdefined by

Answer - 14 : - The given function is

The given function is defined at all pointsof the interval [0, 10].

Let c bea point in the interval [0, 10].

Case I:

Therefore, f iscontinuous in the interval [0, 1).

Case II:

Theleft hand limit of at x = 1 is,

Theright hand limit of f at = 1 is,

It isobserved that the left and right hand limits of f at x =1 do not coincide.

Therefore, f isnot continuous at x = 1

Case III:

Therefore, f iscontinuous at all points of the interval (1, 3).

Case IV:

Theleft hand limit of at x = 3 is,

Theright hand limit of f at = 3 is,

It isobserved that the left and right hand limits of f at x =3 do not coincide.

Therefore, f isnot continuous at x = 3

Case V:

Therefore, f iscontinuous at all points of the interval (3, 10].

Hence, isnot continuous at = 1 and = 3

Question - 15 : -

Discussthe continuity of the function f, where f isdefined by

Answer - 15 : - The given function is

The given function is defined at all pointsof the real line.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < 0

Case II:

Theleft hand limit of at x = 0 is,

Theright hand limit of f at = 0 is,

Therefore, f iscontinuous at x = 0

Case III:

Therefore, f iscontinuous at all points of the interval (0, 1).

Case IV:

Theleft hand limit of at x = 1 is,

Theright hand limit of f at = 1 is,

It isobserved that the left and right hand limits of f at x =1 do not coincide.

Therefore, f isnot continuous at x = 1

Case V:

Therefore, f iscontinuous at all points x, such that x > 1

Hence, isnot continuous only at = 1

Question - 16 : -

Discussthe continuity of the function f, where f isdefined by

Answer - 16 : - The given function f is

The given function is defined at all pointsof the real line.

Let c bea point on the real line.

Case I:

Therefore, f iscontinuous at all points x, such that x < −1

Case II:

Theleft hand limit of at x = −1 is,

Theright hand limit of f at = −1 is,

Therefore, f iscontinuous at x = −1

Case III:

Therefore, f iscontinuous at all points of the interval (−1, 1).

Case IV:

Theleft hand limit of at x = 1 is,

Theright hand limit of f at = 1 is,

Therefore, f iscontinuous at x = 2

Case V:

Therefore, f iscontinuous at all points x, such that x > 1

Thus,from the above observations, it can be concluded that f iscontinuous at all points of the real line.

Question - 17 : -

Findthe relationship between a and b so that thefunction f defined by

iscontinuous at = 3.

Answer - 17 : - The given function f is

If f iscontinuous at x = 3, then

Therefore, from (1), we obtain

Therefore, the required relationship is given by,

Question - 18 : -

For what value of is the function defined by

continuousat x = 0? What about continuity at x = 1?

Answer - 18 : -

The given function f is

If f iscontinuous at x = 0, then

Therefore,there is no value of λ for which f is continuous at x =0

At x =1,

f (1) = 4x +1 = 4 × 1 + 1 = 5

Therefore,for any values of λ, f is continuous at x = 1

Question - 19 : - Show that the function defined by is discontinuous at all integral point. Here denotesthe greatest integer less than or equal to x.

Answer - 19 : - The given function is

It isevident that g is defined at all integral points.

Let n bean integer.

Then,

Theleft hand limit of at x = n is,

Theright hand limit of f at n is,

It isobserved that the left and right hand limits of f at x = n donot coincide.

Therefore, f isnot continuous at x = n

Hence, g isdiscontinuous at all integral points.

Question - 20 : - Is the function defined by continuousat π?

Answer - 20 : - The given function is

It isevident that f is defined at π.

Therefore,the given function f is continuous at = π

Free - Previous Years Question Papers
Any questions? Ask us!
×