MENU

Quadratic Equations Ex 4.3 Solutions

Question - 11 : - Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.

Answer - 11 : -

Let the sides of the two squares be x m and y m.
Therefore, their perimeter will be 4x and 4y respectively
And area of the squares will be x2 and y2 respectively.
Given,
4x – 4y = 24
x – y = 6
x = y + 6

Also, x+ y2 =468

(6 + y2) + y2 =468

36 + y2 + 12y + y2 =468

2y2 + 12y + 432 = 0

 y2 + 6y – 216 = 0

 y2 + 18y – 12y –216 = 0

 y(+18) -12(y + 18) = 0

(y + 18)(y – 12) = 0

 y = -18, 12

As we know, the side of a square cannot benegative.

Hence, the sides of the squares are 12 m and(12 + 6) m = 18 m.


Question - 12 : - Find the nature of the roots of the following quadratic equations. If the real roots exist, find them;

Answer - 12 : -

(i) 2x2 –3x + 5 = 0
(ii) 3x2 – 4√3x + 4 = 0
(iii) 2x2 – 6x + 3 = 0

Solution:

(i) Given,

2x2 – 3x + 5 = 0

Comparing the equation with ax2 + bx c =0, we get

a = 2, b =-3 and c = 5

We know, Discriminant = b2 –4ac

(– 3)2 – 4 (2) (5) = 9 – 40

= – 31

As you can see, b2 – 4ac <0

Therefore, no real root is possible for thegiven equation, 2x2 – 3x + 5 = 0.


Solution

(ii) 3x2 – 4√3x +4 = 0

Comparing the equation with ax2 + bx c =0, we get

a = 3, b = -4√3 and c =4

We know, Discriminant = b2 –4ac

= (-4√3)– 4(3)(4)

= 48 – 48 = 0

As b2 – 4ac =0,

Real roots exist for the given equation andthey are equal to each other.

Hence the roots will be –b/2a and –b/2a.

b/2= -(-4√3)/2×3 = 4√3/6= 2√3/3 = 2/√3

Therefore, the roots are 2/√3 and2/√3.


Solution

(iii) 2x2 – 6x +3 = 0

Comparing the equation with ax2 + bx c =0, we get

a = 2, b =-6, c = 3

As we know, Discriminant = b2 –4ac

= (-6)2 – 4 (2) (3)

= 36 – 24 = 12

As b2 – 4ac >0,

Therefore, there are distinct real roots existfor this equation, 2x2 – 6x + 3 = 0.

= (-(-6) ± √(-62-4(2)(3)) )/ 2(2)

= (6±2√3 )/4

= (3±√3)/2

Therefore the roots for the given equation are(3+√3)/2 and (3-√3)/2

Free - Previous Years Question Papers
Any questions? Ask us!
×