MENU
Question -

Find the nature of the roots of the following quadratic equations. If the real roots exist, find them;



Answer -

(i) 2x2 –3x + 5 = 0
(ii) 3x2 – 4√3x + 4 = 0
(iii) 2x2 – 6x + 3 = 0

Solution:

(i) Given,

2x2 – 3x + 5 = 0

Comparing the equation with ax2 + bx c =0, we get

a = 2, b =-3 and c = 5

We know, Discriminant = b2 –4ac

(– 3)2 – 4 (2) (5) = 9 – 40

= – 31

As you can see, b2 – 4ac <0

Therefore, no real root is possible for thegiven equation, 2x2 – 3x + 5 = 0.


Solution

(ii) 3x2 – 4√3x +4 = 0

Comparing the equation with ax2 + bx c =0, we get

a = 3, b = -4√3 and c =4

We know, Discriminant = b2 –4ac

= (-4√3)– 4(3)(4)

= 48 – 48 = 0

As b2 – 4ac =0,

Real roots exist for the given equation andthey are equal to each other.

Hence the roots will be –b/2a and –b/2a.

b/2= -(-4√3)/2×3 = 4√3/6= 2√3/3 = 2/√3

Therefore, the roots are 2/√3 and2/√3.


Solution

(iii) 2x2 – 6x +3 = 0

Comparing the equation with ax2 + bx c =0, we get

a = 2, b =-6, c = 3

As we know, Discriminant = b2 –4ac

= (-6)2 – 4 (2) (3)

= 36 – 24 = 12

As b2 – 4ac >0,

Therefore, there are distinct real roots existfor this equation, 2x2 – 6x + 3 = 0.

= (-(-6) ± √(-62-4(2)(3)) )/ 2(2)

= (6±2√3 )/4

= (3±√3)/2

Therefore the roots for the given equation are(3+√3)/2 and (3-√3)/2

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×