MENU

Chapter 10 वृत्त (Circles) Ex 10.2 Solutions

Question - 11 : - सिद्ध कीजिए कि किसी वृत्त के परिगत समांतर चतुर्भुज समचतुर्भुज होता है।

Answer - 11 : -


हमें प्राप्त है कि समान्तर चतुर्भुज ABCD उस वृत्त को परिगत करता है (अर्थात् इसकी भुजाएँ उस वृत्त को स्पर्श करती हैं), जिसका केन्द्र O है।
चूंकि, इस बाह्य बिन्दु से वृत्त पर खींची गई स्पर्श रेखाओं की लम्बाई समान होती है।
AP = AS
BP = BQ
CR = CQ
DR = DS
जोड़ने पर।
(AP + BP) + (CR + DR) = (AS + DS) + (BQ + CQ)
⇒AB + CD = AD + BC
परन्तु AB = CD [च.भु. ABCD की भुजाएँ]
और BC = AD
⇒ AB + CD = AD + BC
⇒ 2 AB = 2 BC
⇒ AB = BC
इसी प्रकार AB = DA और DA = CD
अतः AB = BC = CD = AD
ABCD एक समचर्तुभुज है।

Question - 12 : - 4 सेमी, त्रिज्या वाले एक वृत्त के परिगत एक त्रिभुज ABC इस प्रकार खींचा गया है कि रेखाखंड BD और DC (जिनमें स्पर्श बिंदु D द्वारा BC विभाजित है) की लंबाइयाँ क्रमशः 8 सेमी. और 6 सेमी. हैं (देखिए आकृति)। भुजाएँ AB और AC ज्ञात कीजिए।

Answer - 12 : -

यहाँ, वृत्त को केन्द्र O तथा त्रिज्या 4 सेमी. है।
इसके परिगत एक ΔABC है।
चूंकि Δ की भुजाएँ BC, CA और AB वृत्त को क्रमश: D, E और F पर स्पर्श करती हैं।
BF = BD = 8 सेमी.
CF = CD = 6 सेमी.
AF = AE = x सेमी. (माना)
Δ की भुजाएँ इस प्रकार हैं:
14 सेमी., (x + 6) सेमी. और (x + 8) सेमी.
ΔABC का परिमाप = [14 + (x + 6) + (x + 8)] सेमी. = [14 + 6 + 8 + 2x] सेमी. = 28 + 2x सेमी.
परन्तु = = (-14) अवांछनीय है।
x = 7 सेमी.
इस प्रकार, AB = 8 + 7 = 15 सेमी.,
BC = 8 + 6 = 14 सेमी.,
CA = 6 + 7 = 13 सेमी.

Question - 13 : - सिद्ध कीजिए कि वृत्त के परिगत बनी चतुर्भुज की आमने-सामने की भुजाएँ केंद्र पर संपूरक कोण अंतरित करती हैं।

Answer - 13 : -

हमें प्राप्त है कि वृत्त जिसका केन्द्र O है, के परिगत चतुर्भुज ABCD है।
चतुर्भुज की भुजाएँ AB, BC, CD और DA वृत्त को क्रमशः P, Q, R और S पर स्पर्श करती हैं। हम जानते हैं कि बाह्य बिन्दु से वृत्त पर खींची गई स्पर्श रेखाएँ, केन्द्र पर समान कोण बनाती हैं।
∠1 = ∠2,
∠3 = ∠4
∠5 = ∠6
और ∠7 = ∠8
 
एक बिन्दु पर बने सभी कोणों का योग 360° होता है।
∠1 + ∠2 + ∠3 + ∠4 + ∠5 + ∠6 + ∠7 + ∠8 = 360°
⇒ 2(∠1 + ∠8 + ∠5 + ∠4) = 360°
(∠1 + ∠ 8 + ∠5 + ∠4) = 180° …(1)
और 2(∠2 + ∠3 + ∠6 + ∠7) = 360°
⇒ (∠2 + ∠3) + (∠6 + ∠7) = 180° …(2)
चूंकि
∠2 + ∠3 = ∠AOB
∠6 + ∠7 = ∠COD
∠1 + ∠8 = ∠AOD
∠4 + ∠5 = ∠BOC
(1) और (2) से हमें प्राप्त होता है।
∠AOD + ∠BOC = 180°
और ∠AOB + ∠COD = 180°

Free - Previous Years Question Papers
Any questions? Ask us!
×