MENU
Question -

Test whether the following relation R1, R2,and Rare (i) reflexive (ii) symmetric and (iii) transitive:

(i) R1 on Q0 defined by (a, b) R1  a = 1/b.

(ii) R2 on Z defined by (a, b) R2  |a – b| ≤ 5

(iii) Ron R defined by (a, b)  R3  a2 –4ab + 3b2 = 0.



Answer -

(i) Given R1 on Q0 definedby (a, b) R1  a = 1/b.

Reflexivity:

Let a be an arbitrary element of R1.

Then, a  R1

 a ≠1/a for all a  Q0

So, R1 is not reflexive.

Symmetry:

Let (a, b) 
 R1 

Then,(a, b)  R1

Therefore we can write‘a’ as a =1/b

b = 1/a

(b, a)  R1

So, R1 is symmetric.

Transitivity:

Here, (a, b) 
R1 and (b, c) R2

a = 1/b and b = 1/c

a = 1/ (1/c) = c

a ≠ 1/c

(a, c)  R1

So, R1 is not transitive.

 

(ii) Given R2 on Z definedby (a, b) R2  |a – b| ≤ 5

Now we have checkwhether R2 is reflexive, symmetric and transitive.

Reflexivity:

Let a be anarbitrary element of R2.

Then, a  R2

On applying the givencondition we get,

 | a−a | = 0 ≤ 5

So, R1 is reflexive.

Symmetry:

Let (a, b)  R2

 |a−b| ≤ 5                  [Since, |a−b| = |b−a|]

 |b−a| ≤ 5

 (b, a)  R2

So, R2 is symmetric.

Transitivity:

Let (1, 3)  R2 and (3, 7) R2

|1−3|≤5 and |3−7|≤5

But |1−7| 

 (1, 7)  R2

So, R2 is not transitive.

(iii) Given Ron R definedby (a, b)  R3  a2 –4ab + 3b2 = 0.

Now we have checkwhether R2 is reflexive, symmetric and transitive.

Reflexivity:

Let a be anarbitrary element of R3.

Then, a  R3

 a− 4a × a+ 3a2= 0 

So, R3 is reflexive

Symmetry:

Let (a, b)  R3

 a2−4ab+3b2=0

But b2−4ba+3a2≠0 for all a, b  R

So, R3 is not symmetric.

Transitivity:

Let (1, 2)  R3 and (2, 3)  R3

 1 − 8 + 6 =0 and 4 – 24 + 27 = 0

But 1 – 12+ 9 ≠ 0

So, R3 is not transitive.

Comment(S)

Show all Coment

Leave a Comment

Free - Previous Years Question Papers
Any questions? Ask us!
×